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Abstract 

 

The development in additive manufacturing, namely 3D printing, enables the design 

and fabrication of lattice structures in complicated forms. This research numerically 

explores mechanical behaviours of recoverable negative stiffness steel lattices which 

are used as sacrificial structures for the aim of impact or blast isolation. A sacrificial 

structure normally contains an equilibrium path consisted of a high initial stiffness 

range and a practically zero post-buckling stiffness range. The lattice structures studied 

in this research, additionally incorporates a recoverable feature. With deliberate 

utilization of snap-through instability at unit cell level, sequential buckling behaviour 

could be harvested at lattice level. It has been shown that the sequential buckling 

property of lattices successfully maintains a practically constant level of force 

transferred from sacrificial structure to main structure. An estimated 70 - 85% of 

recovery is predicted for the investigated lattices.  

 

Keywords    

structural isolation, unit cell, lattice structure, finite element modelling, snap-through, 
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Chapter 1 

 

 

INTRODUCTION 

1.1 Background and outline 

Conventionally, ‘instability’ is a hostile word to structural engineers as it had been 

regarded as the green light to numerous structural failures and disasters (Bažant, 2000). 

However, the progression in nonlinear mechanics has gained access to a new 

engineering field where structural instability is harnessed for novel applications (Reis, 

2015). Hu and Burgueño (2015) points out that one category of buckling-induced 

application is energy-related such as isolator and absorber. The engineering 

exploitation of structural instability has been significantly facilitated by the rapid 

development in metal additive manufacturing which allows metal material to be jointed 

in free form (Frazier, 2014). Lattice structure, sometimes referred to as metamaterial, 

is a representative output of additive manufacturing technique (Großmann et al., 2019).  

 

This research is a numerical investigation of a recoverable negative stiffness steel lattice 

structure working as a sacrificial structure for impact or blast isolation. Being a line of 

protection for the main isolated structure, a sacrificial structure should play two roles 

as an energy absorber and a load threshold, which prevents the propagation of excessive 

energy or force in main structure (Wadee, Phillips & Bekele, 2020). A structural model 

which satisfies those two requirements, along with its typical load-displacement 

response, is presented in Figure 1.1 (a) and (b) (Carrella, Brennan & Waters, 2006: 

https://www.sciencedirect.com/science/article/pii/S0020768399000785?via%3Dihub#!
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p.679). The quasi-zero stiffness range in Figure 1.1 (b) acts as a load threshold because 

within this range the increase in displacement will result in no increase in load 

transferred from sacrificial structure to main structure. Elongating this quasi-zero 

stiffness range is of prior interest by researchers as the zero-stiffness nature is perfectly 

efficient for energy absorption. Lattice structure, with its great reputation of large 

deformation capability, seems to be a solution to meet this objective. McKown et al. 

(2007) experimentally studied the quasi-static response of a 3D-printed stainless-steel 

lattice with octahedral cells and obtained a relatively long quasi-zero stiffness range. 

Wadley et al. (2007) also met that objective by investigating a multi-layer stainless-

steel lattice structure with pyramidal cells, sequential buckling behaviour was observed 

under quasi-static loading experiment. However, the lattices studied in these works are 

irrecoverable and crushed during experiment. Inspired by previous works, this research 

focuses on designing a sacrificial lattice structure with sequential buckling behaviour 

as well as a recoverable feature.  

 

   

         (a) Structural model                   (b) Typical load-displacement response  

Figure 1.1 Structural model and load-displacement response of isolator (Carrella, Brennan & 

Waters, 2006: p.679) 

 

Paper content is organized in a part-to-whole order from unit cell level to lattice level. 

The second chapter of this study aims at obtaining snap-through behaviour as well as 

high recoverability from arrowhead unit cells. The snap-through behaviour of unit cells 
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is then exploited in the third chapter to harvest sequential buckling behaviour from 

lattice structures.   

 

1.2 Snap-through buckling and sequential buckling 

The most renowned example of snap-through buckling is the three-hinge von-Mises 

truss. Similar snap buckling behaviour is also observed in fix-ended toggle frame 

(Champneys et al., 2019), fix-ended curved beam (Qiu, Lang & Slocum, 2004) and 

hexagonal lattice cell (Gibson and Ashby, 1999). Snap-through buckling is inherently 

bi-stable as it involves a stable pre-buckling stage (a), a destabilization negative 

stiffness post-buckling stage (b) and a restabilization stage (c) (See Figure 1.2).  

 

Sequential buckling could be described as a series of destabilization and restabilization 

process which has been observed in the post-buckling range of cylindrical shells (Hunt 

et al, 1999), I-section beams (Wadee & Gardner, 2012), I-section struts (Wadee & Li, 

2014) and stiffened plates (Wadee & Farsi, 2014). A simple illustration of sequential 

buckling equilibrium path is shown in Figure 1.3.  

 

 

 

 

 

As sequential buckling could be decomposed into a series of destabilization and 

restabilization process which corresponds to the nature of snap buckling, an inspiration 

Figure 1.2 Illustration of snap-through 

behaviour 

Figure 1.3 Illustration of sequential 

buckling behaviour 

 

limit point 
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is such that the sequential buckling of lattice structure could be originated from the 

snap-buckling of lattice layer in a sequential manner.   

 

1.3 Recoverable lattice structure 

Recoverable lattice has been a novel research topic in recent years (Großmann et al., 

2019) for its reusable and sustainable feature. Previous studies on recoverable lattice 

generally adopted super-elastic material or shape memory material. Hatamleh et al. 

(2021) experimentally studied the structural performance of a 3D-printed rubber 

sandwich lattice structure under compressive fatigue and achieved full recovery. Liquid 

metal lattices compressed under 20 ℃ were demonstrated to exhibit nearly full recovery 

when the lattices were heated up to 93 ℃ due to shape memory effect of material (Deng, 

Nguyen & Zhang, 2020). Cheng et al. (2021) reported that carbon fibre reinforced 

honeycomb lattice has an approximately 87% recovery under low voltage electrical 

excitation. However, there is still a research blank in recoverable lattice employing 

traditional building material such as steel, which introduces the main topic of this 

research. 

 

1.4 Material  

Material employed in this study is stainless-steel powder for additive manufacturing. 

Detailed material properties can be referred to previous work by Zhang et al. (2021). 

Important material properties such as Young’s modulus, 0.2% proof stress and ultimate 

strain are taken as 181GPa, 784MPa and 6.3% respectively in this research.  
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Chapter 2 

 

 

UNIT CELLS 

2.1 Introduction 

A lattice structure is composed of inter-jointed unit cells of which the mechanical 

behaviours will further imply the overall structural performance of lattices. This section 

will start from investigating the properties of bare unit cells, namely unit cells without 

internal struts (denoted as UC), and then seeking for possible structural configurations 

of unit cells with internal struts (denoted as UCI) to obtain the aforementioned snap-

through behaviour.  

 

2.2 Bare arrowhead unit cell (UC) 

2.2.1 Geometry, boundary conditions and cross-section 

Geometry and boundary conditions of UC are presented in Figure 2.1. Geometric 

parameters are such that 𝛼  is the inclination angle of upper beams, 𝛽  is the 

inclination angle of lower beams, ℎ and 𝑏 are height and width, 𝑑 is the protruding 

distance of lower beams, namely the vertical distance between node A and node C (or 

D). UC is under compression in vertical direction with a pinned support at node B and 

a roller support at node A. Upper and lower beams are both assigned with circular cross-

section with radius of 𝑟1 and 𝑟2 respectively.  
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Figure 2.1 Geometry, boundary conditions and cross-section 

 

2.2.2 Loading 

As recoverability is of particular interest in this research, a 2-step load-unload 

procedure needs to be applied such that the percentage of recovery can be examined. 

Figure 2.2 illustrates the loading procedure including a load step in which node A is 

forced to displace 2𝑑 and a following unload step. 2𝑑 is named as design ultimate 

displacement that is not expected to be exceeded in normal conditions in practice, 

because deformation beyond this limit will be disadvantageous to the recoverability. It 

should be noted that a maximum displacement of 2𝑑 should be able to capture, if there 

is, the snap-through behaviour of UCs. In Figure 2.2, 𝛿 is the vertical displacement 

of node A and 𝛿𝑅  is the residual displacement of node A after unloading. The 

recoverability of UC is measured by percentage of recovery which is defined as: 

 

𝑝𝑟 = (1 −
𝛿𝑅

2𝑑
) × 100% (2.1) 
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(a) Initial configuration                      (b) During load step 

 

(c) End of load step                        (d) End of unload stap 

Figure 2.2 Illustration of loading procedure 

 

2.2.3 Finite element modelling 

Commercial software Abaqus (2020) is used for finite element (FE) modelling. UCs 

are modelled in 2D planar space where upper and lower beams are assigned with beam 

elements. Prior study (Wadee et al., 2010) has indicated that Quadratic Timoshenko 

beam element (B22) attains a satisfied level of accuracy for modelling deformation of 

beams in arrowhead unit cells. The load and unload steps described in last section are 

defined in General Static procedure as General Static procedure allows multiple steps 

to be defined in sequence. Displacement control is adopted in load step where a tabular 

vertical displacement from 0 to 2𝑑 with a fixed interval of 0.02𝑑 is applied at node 

A. 
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2.2.4 Method  

In order to learn the effects of geometric and cross-sectional parameters on the 

mechanical behaviour of UCs, a set of comparative study is conducted. Except from 

investigating direct dimensional parameters such as 𝛼 and 𝑟1, two indirect parameters 

– 𝛾𝑎  (the ratio between 𝛽 , 𝛼) and 𝛾𝑟 (the ratio between 𝑟1 , 𝑟2) – are chosen to 

represent the changes in geometry and cross-section. Table 2.1 lists four groups of UCs 

which are divided by four magnitudes of 𝛾𝑎 while within each group 𝛾𝑟 changes from 

1 to 4. Therefore, the effects of 𝛾𝑎 and 𝛾𝑟  can be learned by horizontal comparison 

across groups and vertical comparison within each group respectively. For all UCs in 

Table 2.1, 𝛼, 𝑏, 𝑟2 are set as 50°, 200 mm and 2 mm.  
 

Table 2.1 Parameters of UCs 

Group UC 𝛾𝑎 𝛽 𝛾𝑟 𝑟1 (mm) 2𝑑/ℎ 

1 

UC 1-1 

1/20 2.5 

1 2 

0.071 
UC 1-2 2 4 

UC 1-3 3 6 

UC 1-4 4 8 

2 

UC 2-1 

1/10 5.0 

1 2 

0.137 
UC 2-2 2 4 

UC 2-3 3 6 

UC 2-4 4 8 

3 

UC 3-1 

3/20 7.5 

1 2 

0.199 
UC 3-2 2 4 

UC 3-3 3 6 

UC 3-4 4 8 

4 

UC 4-1 

1/5 10.0 

1 2 

0.258 
UC 4-2 2 4 

UC 4-3 3 6 

UC 4-4 4 8 
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2.2.5 Numerical results and findings 

Equilibrium paths (with loading and unloading parts) and 𝑝𝑟 of UCs are shown in 

Figure 2.3 and Table 2.2.  

 

 

Figure 2.3 Equilibrium paths of UCs in Table 2.1 

 

Table 2.2  𝑝𝑟 of UCs in Table 2.1 

UC 1-1 1-2 1-3 1-4 2-1 2-2 2-3 2-4 

𝑝𝑟(%) 93.57 79.10 76.32 76.09 69.49 47.20 44.57 43.31 

UC 3-1 3-2 3-3 3-4 4-1 4-2 4-3 4-4 

𝑝𝑟(%) 52.96 32.88 29.80 25.63 42.23 24.76 20.87 15.20 
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One important finding from Figure 2.3 is that snap-through behaviour is only observed 

in UC 3-4, UC 4-3 and UC 4-4. The equilibrium paths of these three UCs are 

particularly picked from Figure 2.3 and then plotted in Figure 2.4 along with 

deformation shapes corresponding to critical points.  

 

Figure 2.4 Equilibrium paths of UCs exhibiting snap-through behaviour 

 

An intuitive conclusion is that by increasing 𝛾𝑟 and 𝛾𝑎 simultaneously, snap-through 

behaviour will somehow be triggered in UC. The underlying reason of this phenomena 

lays in the interaction between bending and membrane actions: As node A is loaded 

upwards, lower beams will bend to adapt the resultant deformation and meanwhile push 

upper beams to expand laterally, which results in a combination of bending and 

membrane actions. Figure 2.5 is a free body cut of lower beam AC. 𝐹𝑥  is the 

horizontal component of force vector on cross-section C, which is used to 

approximately represent the membrane action.  

 

 

Figure 2.5 Free body cut of beam AC 
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For all equilibrium conditions during loading and unloading, we have: 

𝐹𝑥 · 𝑑′ + (𝑀1 + 𝑀2) = 𝐹𝑦 · 𝑏′ (2.2) 

𝐹𝑦 =
(𝐹𝑥 · 𝑑′)

𝑏′
  +

(𝑀1 + 𝑀2)

𝑏′
(2.3) 

  

where 𝑑′ = 𝑑 − 𝛿, 𝑏′ is approximately taken as 100mm for all equilibrium conditions.  

𝐹𝑦 is shown to be shared by membrane effect and bending effect represented by the 

first and second term at right hand side of Equation 2.3. Figure 2.6 shows equilibrium 

paths of UC 4-2, UC 4-3 and UC 4-4 along with the share of load response by membrane 

effect and bending effect calculated based on Equation 2.3.  

 

  

 

 

Figure 2.6 Membrane and bending effect of UC 4-4, UC 4-3 and UC 4-2 
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Table 2.3 Share of membrane and 

bending effect at limit point 
 

UC 
Membrane 

effect (%) 

Bending 

effect (%) 

4-4 22.13 77.87 

4-3 3.3 96.7 

* Limit point only occurs at 

equilibrium paths of UC 4-3 and 

UC 4-4. 
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It is seen from Figure 2.6 that the membrane effect of all three UCIs displays snap-

through behaviour with that of UC 4-4 the most obvious and that of UC 4-2 very 

insignificant. Unlike membrane effect, load shared by bending effect exhibits an 

approximately bi-linear shape which is a result of material yielding at node C and A 

where critically large deformation is observed. Material yielding at nodal area 

dramatically slows down the increase of bending effect after 𝛿/ℎ = 0.05.  

 

Occurrence of limit point depends on two factors: (a) large 𝛾𝑟, which leads to more 

significant membrane effect as upper beams become stiffer; (b) yielding at node C(D) 

and A, which will rapidly slow down the increase of bending effect, a limit point will 

appear when the increase of bending effect fails to counteract the decrease of membrane 

effect.  

 

However, extensive yielding at nodes in turn results in low 𝑝𝑟 (e.g., 15.20% for UC 

4-4 and 20.87% for UC 4-3), which indicates that snap-through behaviour and high 

recoverability cannot co-exist with simple bare arrowhead geometry. Thus, more 

complex geometry should be explored, which leads to next section. 

 

 

2.3 Arrowhead unit cell with internal struts (UCI) 

In Section 2.2, it has been shown that UCs with same radius of cross-section for upper 

and lower beams (𝛾𝑟 = 1) as well as low 𝛾𝑎 will yield high percentage of recovery, 

such as UC 1-1 and UC 2-1. Nevertheless, their equilibrium paths are approximate to 

linear which is of little use for structural isolation. This section seeks for possible ways 

of adding internal struts in UCs to take advantage of strut buckling, and finally harvests 

snap-through behaviour and high 𝑝𝑟  simultaneously. Further investigation 

demonstrated that the equilibrium paths of UCIs are tailorable by designing geometric 

and cross-sectional parameters. 
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2.3.1 Geometry, boundary conditions and cross-section 

Two possible arrangements of internal strut(s) are proposed as shown in Figure 2.7. 

Configuration 1 adopts a vertical middle strut; Configuration 2 incorporates two 

inclined struts with one end at node A and another end supported at somewhere in the 

top half of upper beams. In Figure 2.7, 𝑟 is the radius of external beams, 𝑟𝑖 is the 

radius of internal strut, 𝛾ℎ  defines the position of the top end of internal strut in 

Configuration 2, other notations and boundary conditions remain the same as they are 

in Figure 2.1.  

 

 

        (a) Configuration 1                      （b) Configuration 2 

Figure 2.7 Geometry, boundary conditions and cross-section 

 

2.3.2 Loading 

The loading procedure are very same as that for UCs (See Figure 2.2). Notations in 

Figure 2.2 such as 𝛿 and 𝛿𝑅 also apply in this section. As a reminder, 𝛿 represents 

the vertical displacement of node A while 𝛿𝑅 is the residual vertical displacement of 

node A after unloading.  

 

2.3.3 Finite Element Modelling 

FE modelling of UCIs are basically the same as that for UC except from the setting of 

loading. The loading approach is still defined in Static General procedure, however, 
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though Static General method enables the calculation of 𝑝𝑟, it will lose accuracy in 

terms of capturing buckling load. Therefore, Static General method is not suitable for 

imperfection sensitivity study. Thus, Static Riks method, which is specifically used for 

solving limit point and post-buckling problems (Riks, 1979), is employed in 

imperfection sensitivity study to avoid excessive errors. 

 

2.3.4 Method 

In order to compare the two configurations, a comparative study is conducted on 10 

UCIs listed in Table 2.4. The 10 UCIs are grouped by their employed configuration 

and for all UCIs, 𝛼 , 𝛾ℎ ,   𝑟 , 𝛾𝑎 , 𝑏  are set as 50°, 1/3, 2 mm, 1/20 and 200 mm 

respectively. The corresponding values of 𝛽 and 2𝑑/ℎ are 2.5°and 0.07. The first 

part of this comparative study includes the comparison of equilibrium paths and 

recoverability while the second part compares imperfection sensitivity of the two 

configurations. This study helps examine the suitability of the two configurations and 

also looks into the effect of 𝑟𝑖 on structural performance.  

 

Table 2.4 Parameter of UCIs  

Group UCI 𝑟𝑖 (mm) 

Configuration 1 

UCI 1-1 0.60 

UCI 1-2 0.70 

UCI 1-3 0.80 

UCI 1-4 0.90 

UCI 1-5 1.00 

Configuration 2 

UCI 2-1 0.60 

UCI 2-2 0.65 

UCI 2-3 0.70 

UCI 2-4 0.75 

UCI 2-5 0.80 
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2.3.5 Numerical results and findings 

2.3.5.1 Equilibrium paths and recoverability 

The equilibrium paths of UCIs in Group 1 and Group 2 are shown in Figure 2.8. 𝑝𝑟 

of all UCIs are listed in Table 2.5.    

 

Figure 2.8 Equilibrium paths of UCIs 

 

Table 2.5 𝑝𝑟 of UCIs in Table 2.3 

UCI 1-1 1-2 1-3 1-4 1-5 

𝑝𝑟(%) 86.27 81.69 76.77 71.74 66.93 

UCI 2-1 2-2 2-3 2-4 2-5 

𝑝𝑟(%) 78.58 75.86 73.30 70.90 68.73 

 

The equilibrium paths in Figure 2.8 can be categorized into two types: the first type is 

observed in UCIs with relatively thin internal strut(s) such as UCI 1-1, UCI 1-2, UCI 

1-3 and UCI 2-1, which contains a high pre-buckling stiffness followed by a lower 

positive post-buckling stiffness; the second type is observed in UCIs with relatively 

thick internal strut(s) such as UCI 1-4, UCI 1-5, UCI 2-2, UCI 2-3, UCI 2-4 and UCI 

2-5, which contains the destabilization and restabilization feature, although in UCI 1-4 
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and UCI 2-2 that destabilization feature is insignificant as the negative stiffness range 

is nearly flat. In conclusion, snap-through behaviour can be obtained in both 

configurations by increasing the radius, or in other words, reducing the slenderness of 

internal strut(s).  

 

The formation mechanism of snap-through behaviour is interpreted as following: A 

UCI can be decomposed into two constituent parts – internal strut(s) and external beams 

– with each part making its own contribution to the overall load resistance. Take UCI 

1-5 for example, Figure 2.9 plots its equilibrium path along with the share of load 

resisted by internal struts and external beams. It is found that the internal strut exhibits 

a typical buckling behaviour of imperfect strut which is unstable due to material 

yielding in its post-buckling range. The UCI is firstly destabilized by the unstable post-

buckling behaviour of internal strut and then restabilized when the contribution of 

external cell becomes dominant in the load resisting mechanism.    

 

 

Figure 2.9 Decomposing of equilibrium path of UCI 1-5 

 

Comparison between the two configurations shows that Configuration 1 will yield a 

much higher initial stiffness than Configuration 2 (e.g., 4275 N/mm for UCI 1-5 and 

515 N/mm for UCI 2-5). This is because the direction of internal strut in Configuration 

1 is in line with the direction of external load so that the internal strut will exhibit a 

typical strut buckling behaviour with an initial stiffness close to its axial stiffness, 
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whereas the oblique nature of internal struts in Configuration 2 will lower the initial 

stiffness in comparison with Configuration 1. It is also found that increasing the radius 

of internal strut will lower 𝑝𝑟.  

 

2.3.5.2 Imperfection sensitivity 

Imperfection sensitivity diagrams (Figure 2.10) of two UCIs – UCI 1-5 and UCI 2-4 – 

are constructed for further comparison between the two configurations. The reason of 

choosing these two UCIs for comparison is that their linear buckling loads 𝑃𝐶  are 

basically the same (360N for UCI 1-5 and 358.4N for UCI 2-4). Initial geometric 

imperfection is denoted as 𝜀 which is the initial deflection at mid span of internal 

strut(s) while 𝑙 is the length of internal strut(s). 𝜀 increases from 0 to around 𝑙/250. 

The first finding from Figure 2.10 is that Configuration 2 is more imperfection 

insensitive than Configuration 1. The second finding is that the shapes of two 

imperfection sensitivity curves have different nature with that of Configuration 1 

convex to origin and that of Configuration 2 concave to origin. This indicates that the 

variation of buckling load induced by random imperfection can be further lowered in 

Configuration 2 by improving the precision of additive manufacturing, however, it is 

less effective of doing this in Configuration 1 due to its ‘convex’ nature.   

  

 

Figure 2.10 Imperfection sensitivity diagrams 
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In conclusion, both two configurations are feasible in terms of obtaining snap-through 

behaviour while Configuration 2 is preferable regarding its less imperfection sensitivity. 

Thus, in the rest of this thesis, Configuration 2 is employed and further investigated, 

the abbreviation ‘UCI’ refers only to Configuration 2 unless specifically noted. 
 

2.3.6 ‘Designing’ of equilibrium paths 

In section 2.3.5, the effect of 𝑟𝑖 on equilibrium path was grasped. However, the effects 

of 𝛽, 𝑟, 𝛾ℎ are still left to be reviewed and will be covered in this section. The results 

and findings demonstrated that by adjusting geometric and cross-sectional parameters, 

equilibrium paths of UCIs can be deliberately designed according to practical needs 

such as objective 𝑝𝑟 , objective buckling load, objective ultimate deformation and 

energy absorption etc. 

 

2.3.6.1 Effect of 𝜷, 𝒓, 𝜸𝒉 

To learn the effect of 𝛽 , 𝑟 , 𝛾ℎ , variable-controlling approach is used in three 

comparative studies, the results are presented in Figure 2.11 (a), (b), (c) respectively. 

In each figure, only the controlled parameter is changed among the three UCI cases 

while other parameters remain unaltered. 𝑝𝑟 and energy absorption of the three UCIs 

in Figure 2.11 (a) are listed in Table 2.6. It should be noted that the horizontal axis in 

Figure 2.11 (a) is no longer 𝛿/ℎ but 𝛿/2𝑑 for visual comparison of recoverability. 
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* Other parameters: 𝛼=50°, 𝑏=200mm, 

𝑟𝑖=0.70mm, 𝑟=2mm, γh=1/3 

Table 2.6 𝑝𝑟 and energy absorption 

𝛽 𝑝𝑟 

(%) 

Energy absorption 

(10-3 J) 

3° 71.47 2838.29 

2° 74.86 1721.66 

1° 84.20 793.822 
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Findings from Figure 2.11 are threefold: (a) reducing 𝛽 (equivalent to reducing 𝑑) 

will improve recoverability without sacrificing the buckling load, however, it is also 

shown in Table 2.6 that the increase in 𝑝𝑟 is accompanied by a significant reduction 

in energy absorption; (b) the tail of equilibrium path will be lifted up by increasing 𝑟. 

Increasing 𝑟 also slightly increase the load magnitude at limit point; (c) the initial 

stiffness of UCIs could be increased by lowering 𝛾ℎ. 

 

2.3.6.2 Summary 

In summary, the designing of equilibrium path can be divided into 4 parts: (a) limit 

point; (b) tail; (c) initial stiffness; (d) recoverability. The design methods are illustrated 

in Figure 2.12. 
 

 

 Figure 2.12 Design diagram  
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Figure 2.11 Effect of 𝛽, 𝑟, 𝛾ℎ 
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Chapter 3 

 

 

LATTICE 

3.1 Introduction 

In chapter 2, a thorough investigation was implemented on arrowhead unit cells. This 

chapter takes a further step from unit cell to 3D lattice structure and seeks for ways of 

harvesting sequential buckling behaviour in lattices based on the findings from last 

chapter. 

 

In last chapter unit cells are modelled in 2D planar space, whereas 3D unit cells are 

needed for the modelling of 3D lattice structure. A 3D unit cell is set as two planar unit 

cells jointed at right angle, as shown in Figure 3.1. A lattice is formed by stacking 3D 

unit cells together in rows and columns, example of a 3(column)×4(row) lattice is 

shown in Figure 3.2.  

 

        

            Figure 3.1 3D unit cell               Figure 3.2 3×4 lattice  
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3.2 Finite Element Modelling of Lattice 

All structural members adopt Quadratic Timoshenko beam element type in 3D space 

(B32). Theoretical boundary condition is presented in Figure 3.3 (a) (shown in 2D 

plane for simplicity). This boundary condition allows the lateral expansion or shrinkage 

of lattice. Numerical modelling of this boundary condition is by two steps: (a) coupling 

the U2 and UR1, UR2, UR3 (vertical displacement and all rotations) of all bottom nodes 

and all top nodes respectively; (b) fix the middle top node and add a roller support at 

middle bottom node. It should be noted that the reason why top middle node is fixed 

instead of pinned is simply for avoiding non-convergence during FE analysis. Since the 

structure is geometrically symmetric and undergoes symmetric loading, the top middle 

node is not expected to have any rotation, thus this modification in boundary conditions 

makes no practical difference but helps converge the FE analysis. Figure 3.3 (b), (c) 

show the boundary conditions of lattice in Abaqus. 

 

     

(a) theoretical boundary condition    (b) coupling constraint          (c) support 

Figure 3.3 Theoretical and numerical boundary conditions 

 

3.3 ‘Lattice Effect’  

In an individual unit cell, the left node and right node are free, however, they are jointed 

with adjacent unit cells in lattice. Thus, deformation of a unit cell in lattice is 

constrained by adjacent unit cells to some extent. As a result, the required external force 

to push the unit cell in lattice to a certain magnitude of displacement will be larger than 
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that for an individual unit cell. This restraining effect is named as ‘lattice effect’ and 

verified in this section by comparing the equilibrium paths of a 2D individual UCI and 

a one-row lattice which is composed of ten 2D UCIs (shown in Figure 3.4). To make 

the two cases comparable, the load magnitude for one-row lattice is multiplied by a 

factor of 1/10 and the factored equilibrium path (curve 1) is plotted with the equilibrium 

path of 2D UCI (curve 2) together in Figure 3.5. It is seen that the tail of curve 1 is 

higher than that of curve 2. Therefore, to make curve 1 coincide with curve 2, the radius 

of external beam in lattice needs to be reduced by some amount. To distinguish from 

𝑟, this modified radius of external beam in lattice is named as 𝑟𝑙. In this case, it is 

confirmed by trial and error that the two curves coincide when 𝑟𝑙 equals to 1.95mm.  

 

 

Figure 3.4 One-row lattice 

 

Figure 3.5 Illustration of ‘lattice effect’ 

 

Lattice effect indicates that the design result of UCIs according to section 2.3.6 cannot 

be directly applied to lattice, modification of 𝑟 is required to counteract the lattice 

effect and thus the mechanical behaviour of individual unit cells can be duplicated into 

unit cells in lattice.  
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3.4 Lattice with sequential buckling behaviour 

3.4.1 Conceptual design  

Figure 3.6 presents a typical equilibrium path of lattice with sequential buckling 

behaviour which could be regarded as a series of snap buckling of unit cell layers. 𝑃𝑖
𝐶  

represents the buckling load of layer 𝑖  which corresponds to the 𝑖 th peak on 

equilibrium path. In order to achieve sequential buckling nature and also ensure a load 

threshold effect, 𝑃𝑖
𝐶  should meet two requirements: (a) 𝑃𝑖

𝐶  should be progressively 

increasing such that buckling of layers can be triggered in sequence; (b) the overall 

increase in 𝑃𝑖
𝐶  should be kept within a relatively small limit. In addition, for a more 

efficient energy absorption capacity, 𝑙𝑖  is supposed to be as long as possible on 

condition that the recoverability of lattice is not much sacrificed.  

 

 

 

 

 

 

 

 

Figure 3.6 Typical equilibrium path of sequential buckling lattice  

 

The design of sequential buckling lattice can be ultimately broken down to the design 

of UCI which can be referred to section 2.3.6. Figure 3.7 shows the desired equilibrium 

path of UCI which will satisfy the aforementioned three requirements. As a reminder, 

‘lattice effect’ should be considered, hence 𝑟 which is designed based on individual 

unit cell needs to be modified to 𝑟𝑙.  
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Figure 3.7 Desired equilibrium path of UCI 

 

3.4.2 Design results 

Based on principles of conceptual design, two 3×4 lattices are designed with their 

information listed in Table 3.1. In lattice 1, 𝑟𝑖  is maintained the same while 𝑟𝑙,𝑖 

changes among layers while the opposite method is exploited in lattice 2. The value of 

𝑑 corresponding to 𝛽= 3°is 5.24mm. Since 2𝑑 is the design ultimate displacement 

of a single UCI, 8𝑑 is set as the design ultimate displacement of a 4-row lattice. 

 

 

 

 

 

 

 

 

 

 

 

3.4.3 Numerical results and findings 

Equilibrium paths of Lattice 1 and Lattice 2 are presented in Figure 3.8, the two curves 

are cut off at design ultimate displacement which is 41.96mm. To statistically analyse 

Table 3.1 (a) Lattice 1 

Position of 

UCI 
𝑟𝑙,𝑖 𝑃𝑖

𝐶  (N) 

Layer 1 1.72 277.72 

Layer 2 1.74 279.26 

Layer 3 1.76 280.74 

Layer 4 1.78 282.17 

*𝑟𝑖=0.68mm, 𝑏=200mm,  

𝛼=50°, 𝛽= 3°, 𝛾ℎ=1/3 

 

(b) Lattice 2 

Position of 

UCI 
𝑟𝑖 𝑃𝑖

𝐶 (N)    

Layer 1 0.68 277.72    

Layer 2 0.681 279.08    

Layer 3 0.682 280.47    

Layer 4 0.683 281.86    

*𝑟𝑙.𝑖=1.72mm, 𝑏=200mm,  

𝛼=50°, 𝛽= 3°, 𝛾ℎ=1/3 

  
 

 

slightly larger than 𝑃𝑖+1
𝐶  
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the two equilibrium paths, the mean and standard deviation of load values within range 

𝑙𝑖 are calculated and summarized in Table 3.2.  

 

(a) P-Displacement curve            (b) P-Normalized displacement curve 

Figure 3.8 Equilibrium paths of Lattice 1 and Lattice 2 

 

 

 

 

 

 

 

 

It is seen from Figure 3.8 that for the two lattices, the first peak load is higher than the 

second one, which is contrary to conceptual design. Besides, there is small fluctuation 

in load response around the third peak of Lattice 2 because the internal struts in layer 3 

do not buckle strictly at the same time, little offset between the buckling of struts is 

observed. These are probably due to the boundary conditions set up in Abaqus, future 

study will refine the modelling techniques of boundary conditions to avoid these 

problems. Lattice 1 and 2 have relatively similar behaviour and are both able to ensure 

a practically constant level of load resisting capacity in the sequential buckling range. 

The energy absorption values are 51.2J and 52.6J for Lattice 1 and Lattice 2. The mean 

values of load and coefficients of variation only slightly increase from 𝑙1 to 𝑙3, which 
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Table 3.2 (a) Lattice 1 

Range 
Mean 

(N) 

Standard 

deviation 

Coefficient 

of 

variation 

𝑙1 1273.259 68.22364 0.053582 

𝑙2 1296.206 72.3436 0.055812 

𝑙3 1311.669 75.97831 0.057925 

 

(b) Lattice 2 

Range 
Mean 

(N) 

Standard 

deviation  

Coefficient 

of 

variation 

𝑙1 1266.065 65.95772 0.052097 

𝑙2 1289.001 74.1234 0.057505 

𝑙3 1293.346 78.04414 0.060343 
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proves that both two lattices maintain a good property during the whole sequential 

buckling process. Another finding is that to keep a progressive but small increase in 

𝑃𝑖
𝐶 , the change in 𝑟𝑖 among layers in Lattice 2 should be much less than the change in 

𝑟𝑙,𝑖 in Lattice 1 because 𝑃𝑖
𝐶  is more sensitive to 𝑟𝑖 rather than 𝑟𝑙,𝑖. Currently, additive 

manufacturing is not capable of distinguishing a difference in thickness under 20 μm 

which is the thinnest printable layer thickness, this makes the printing of Lattice 2 

unachievable. Thus, Lattice 1 is the preferable option. The percentage of recovery of 

lattices cannot be directly obtained from FE analysis as the employed Static Riks 

procedure does not allow unloading step to be defined. Thus, percentage of recovery 

can only be predicted from the 𝑝𝑟 of UCIs. The UCIs in Lattice 1 and Lattice 2 will 

give 𝑝𝑟 ranging from 70% -- 75%, thus prediction can be made that percentage of 

recovery of the two lattices will be within that range too.  

 

It is also worth studying the structural behaviour of the lattices when ∆ exceeds the 

design ultimate displacement. Figure 3.9 shows the extended version of equilibrium 

paths of Lattice 1 and Lattice 2 which are cut off at the stage where the maximum 

equivalent plastic strain (PEEQ) of external beams reaches material ultimate strain. It 

is observed that after sequential buckling range, load-displacement curves start to rise 

with a low positive stiffness till material failure is witnessed in external beams. For both 

lattices, the load magnitude at the end of equilibrium path is around 60% larger than 

the first peak. 

 

Figure 3.9 Equilibrium paths (till material failure) of Lattice 1 and Lattice 2  
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Chapter 4 

 

 

CONCLUSION and RECOMMENDATION 

This study aims at investigating the structural behaviour of recoverable negative 

stiffness steel lattice structure for the use of structural isolation. The research is 

organized from part (unit cells) to whole (lattice). It has shown that bare unit cells are 

not suitable for constituting recoverable lattice, whereas unit cells with internal strut(s) 

are proved to be applicable. Further investigation has demonstrated that the equilibrium 

paths of unit cells are tailorable by adjusting critical parameters. Based on numerical 

results and findings of unit cells, steel lattices with sequential buckling behaviour have 

been designed and analysed numerically. It has shown that the designed lattice is able 

to maintain its desirable property during sequential buckling process and a predicted 

70-75% of recovery is met corresponding to an 8% normalized deformation.        

 

This study is certainly not exhaustive and recommended future work can be organized 

as threefold: firstly, numerical modelling techniques for lattice structure is required to 

be refined in order to simulate practical conditions; secondly, possible methods should 

be searched for to lower the structural stiffness after the design ultimate displacement 

is exceeded; thirdly, experimental work should be carried out to validate the numerical 

results and also give indications on updating numerical modelling techniques.  
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