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Abstract 

This study presents the numerical analysis of slender S690 high-strength steel plate girders, with welded 

sections and longitudinal stiffeners, loaded under combined bending, shear and compression. 

The ultimate strength of steel plate girders is evaluated using the formulations according with the recent 

prEN 1993-1-5 regarding both methods proposed in the standard, the Effective Width Method (EWM) and 

the Reduced Stress Method (RSM).  

Using the EWM, the global safety verification of the plate girders loaded with combined bending, shear 

and compression is performed adopting the interaction formulation proposed by Biscaya. These results 

are compared to the ultimate resistances of plate girders computed using numerical models using a 

geometrically and materially non-linear analysis with imperfections.  

When using the RSM, the global safety of the plate girders loaded with combined bending, shear and 

compression is performed adopting the standard procedure and a new feature of considering the RSM 

formulation with some possible stress shedding from the web to the flanges (RSM+S). 

A parametric study is carried out to compare the ultimate resistances of a set of plate girder geometries 

given by the EWM, RSM and RSM+S with the results provided by the numerical models, for a plate girder 

geometry with and without flanges, and considering one longitudinal closed stiffener placed at several 

different positions along the compressed part of the web. 
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Resumo 

Este trabalho apresenta a análise numérica de vigas esbeltas de secção soldada em aço de alta resistência 

S690, com reforços longitudinais, submetidos a esforços combinados de flexão, esforço transverso e 

compressão. 

A resistência das vigas de aço de secção soldada é avaliada utilizando as formulações de acordo com a 

recente prEN 1993-1-5 no que diz respeito a ambos os métodos propostos na norma, o Método de Largura 

Efetiva (EWM) e o Método da Tensão Reduzida (RSM). 

Utilizando o Método de Largura Efetiva, é feita a verificação global da segurança das vigas de aço de 

secção soldada submetidas a esforços combinados utilizando a formulação de interação proposta por 

Biscaya. As resistências últimas são comparadas com as obtidas por modelos numéricos de elementos 

finitos usando uma análise geométrica e materialmente não linear com imperfeições. 

Ao utilizar o Método da Tensão Reduzida, é avaliada a segurança global das vigas de secção soldada 

submetidas a esforços combinados adotando o procedimento definido no código e uma nova 

possibilidade de considerar uma certa redistribuição de tensões normais da alma da viga para os banzos 

(RSM+S). 

É realizado um estudo paramétrico para comparar as resistências últimas de um conjunto de geometrias 

de vigas de secção soldada obtidas pelos métodos EWM, RSM e RSM+S com os resultados fornecidos 

pelos modelos numéricos, para uma geometria da viga de uma placa de alma com e sem banzos, e 

considerando um reforço longitudinal de secção fechada colocado em várias alturas da parte comprimida 

da alma da viga. 
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𝛼𝑟𝑘 Load amplifier to reach the characteristic resistance 

 

Chapter 4 

𝑃𝑇𝑜𝑡𝑎𝑙  Total load 

𝐿𝑃𝐹 Load proportionality factor 

𝑃𝑅𝑒𝑓  Initial reference load 

𝑓𝑦 Steel yielding stress  



XIX 

𝑓𝑢 Ultimate steel stress  

𝜀𝑦 Strain correspondent to the yielding stress 

𝜀𝑢 Strain correspondent to the ultimate stress 

 

Chapter 5 

𝑁𝑏,𝐹𝐸𝑀  Resistance to axial force of a plate girder obtained by the finite element model  

𝑀𝑏,𝐹𝐸𝑀 
Resistance to bending moment of a plate girder obtained by the finite element 
model 

𝑉𝑏,𝐹𝐸𝑀  Resistance to shear of a plate girder obtained by the finite element model 

𝑅𝐹𝐸𝑀  Distance from the origin to a point of the interaction surface N-M-V obtained by 
finite elements model 

𝑅𝑃𝑅𝑂𝑃𝑂𝑆𝑇𝐴  Distance from the origin to a point of the interaction surface N-M-V obtained by the 
proposed formulation 

 

Chapter 6 

𝑁𝑅𝑆𝑀  Resistance to axial force of a plate girder obtained by the RSM 

𝑁𝐸𝑊𝑀  Resistance to axial force of a plate girder obtained by the EWM 

𝑀𝑅𝑆𝑀  Resistance to bending moment of a plate girder obtained by the RSM 

𝑀𝐸𝑊𝑀  Resistance to bending moment of a plate girder obtained by the EWM 

𝑉𝑅𝑆𝑀  Resistance to shear of a plate girder obtained by the RSM 

𝑉𝐸𝑊𝑀  Resistance to shear of a plate girder obtained by the EWM 

𝜏𝑐𝑟  Critical shear stress 

𝜎𝑓,𝑁 , 𝜎𝑓,𝑀 Normal stress due to compression and bending moment on the flange 

𝜎𝑤,𝑁 , 𝜎𝑤,𝑀 Normal stress due to compression and bending moment on the web 

𝐹𝑓 Applied force in the flange 

𝐹𝑓,𝑠𝑢𝑝,𝑁 , 𝐹𝑓,𝑠𝑢𝑝,𝑀 Applied force due to N and M in the flange 
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1. Introduction 

1.1. Background and Motivation 

Over the last three decades, the construction of steel-concrete composite cable-stayed bridges has increased 

significantly given their high range of spans, from 600 m to over 1000 m [1]. Due to the high competitiveness 

and structural efficacy of these types of bridges, plate-girders are often adopted, commonly using I-girders 

and box-girders decks. In addition to being subjected to bending and shear, these beams are also subjected 

to high compression forces as the deck is suspended by inclined steel cables [Fig. 1]. Thus, to guarantee the 

structural safety of the plate girders adopted, the interaction of N-M-V forces must be verified, considering 

their plate buckling behaviour. 

The development of high strength steels, namely the S690 steel, poses new challenges in design, as to take 

advantage of the material´s high strength it is necessary to adopt slender beams which may lead to the need 

of a greater number of stiffeners in the beam’s web or the use of stronger closed stiffeners [4]. 

 

 

 

Figure 1.1: Steel-concrete composite cable-stayed bridge deck example: (a) N-M-V interaction at governing section,  
(b) I-girder cross-section and (c) deck cross-section [2, 3] 

 

1.2. Objectives and Scope 

The focus of this research work is the study of high strength steel plated I-girders with longitudinal stiffeners 

subjected to combined loads, namely compression, bending and shear. The N-M-V interaction can follow the 

formulations present in the current version of EN1993-1-5 [5]. 

(a) 

M 
N 

V 

 

(c) 

 

 

(b) 
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However, it is known that this formulation does not give the best assessment of the real interaction of the 

forces. In that regard, it is worth noting the investigations conducted by Sinur and Beg [6,7], and Jáger and 

Kӧvesdi [8,9,10], who investigated numerically and experimentally the bending-shear interaction  

(M-V interaction) for a large range of stiffened and unstiffened I-girders, but without compression. Based on 

these studies some enhancements have been introduced in the prEN1993-1-5 [11], namely in the bending-

shear interaction formulas. 

Recently, Biscaya studied the behaviour of S355 steel plate girders submitted to the combined N-M-V forces 

[12,13] and proposed some improvements in the design N-M-V interaction formulation. This formulation has 

been tested for high strength steel S690 plate girders with only transverse stiffeners [14] and proved to give 

good results as well. 

Therefore, the main goal of this study is to extend the application of the proposed formulation for the case 

of high strength steel S690 longitudinally stiffened slender plate girders. Indeed, it is intended to investigate 

the optimum position of the longitudinal closed stiffener when the girder is loaded under pure bending, 

shear, and compression, and when all three N-M-V internal forces are present.  

Moreover, the results of the numerical investigation will be compared with the resistances obtained using 

the prEN1993-1-5[11] formulations, using the Effective Width Method and the Reduced Stress Method, 

which makes it possible to compare the efficiency of both methods. Finally, it is intended to extend the 

Reduced Stress Method formulation considering the possibility of some stress shedding from the web to the 

flanges, as proposed in reference [12], and evaluate the enhancements obtained with this procedure, still 

not possible in the frame of the prEN1993-1-5 [11] formulation. 

 

1.3. Outline 

After this chapter of general introduction to the background and identification of the objectives and scope 

of the present work, in Chapter 2 the pre-design rules for slender plated girders structures are introduced 

including for the longitudinal stiffeners. 

Chapter 3 refers to the aspects of the behaviour of plate girders, regarding their different buckling modes, 

and presents the current methodologies for structural verification of plates and beams of welded sections 

proposed in prEN 1993-1-5 [11], namely according with the effective width method (EWM) and the reduced 

stress method (RSM). 

Chapter 4 presents in detail the construction of the numerical models, referring in particular the proposed 

geometry of the model and different patterns of equivalent geometric imperfections to be considered in 

order to identify the imperfection that leads to the lowest ultimate resistance of longitudinally stiffened 

plates subjected to different loads. 
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Chapter 5 analyses and discusses the results obtained for the ultimate resistance of stiffened plates when 

subjected to axial forces, bending moments and shear forces, applied separately as well as combined. These 

results are compared with the resistances obtained by the new proposal developed for plate girder sections 

in [12], as well as by the formulation given in the prEN 1993-1-5 [11]. A study of the post maximum load 

behaviour of the plate girders for different loadings is also carried out in this chapter. 

Chapter 6 presents a detailed study of the Reduced Stress Method (RSM) and its application for the safety 

verification of plate girders with one longitudinal stiffener placed at several positions along the web and 

loaded with different N-M-V loadings. A new proposal for the formulation of the RSM method that assumes 

the possibility of stress shedding from the webs to the flanges. These results are compared with those 

obtained applying the EWM and RSM with the formulations proposed in prEN 1993-1-5 [11]. 

Finally, in Chapter 7 the general conclusions of the present study are outlined, namely referring to the 

possible enhancements in the N-M-V design verification of slender plate girders made of HSS S690 in relation 

to the current standard formulations of the EWM and RSM, with the possibility of considering some stress 

shedding from the webs to the flanges. Further research works, identified during the development of the 

present study, are also proposed. 
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2. Pre-design of plate girders with longitudinal stiffeners 

2.1. Introduction 

In the field of steel and steel-concrete composite bridge decks, the structural capacity that is required 

sometimes leads to uneconomical solutions. To overcome this limitation, it is possible to adopt structural 

plated girder structures, formed by welding steel plates as presented in Figure 2.1. 

 

a
Web FlangeTransverse 

stiffener

cici

tfi

tw

hw

cscs

tfs

h

Side view Cross-section

hw

Longitudinal 
stiffener

a

l

hws

hwi

 

Figure 2.1: Plate girder – geometry and notation [adapted from ref. 15] 

 

This solution allows the cross-section of a beam to be defined in a very efficient way, designing the plates in 

order to optimize the resistance/weight ratio; thus, welded section beams are a flexible solution in terms of 

structural design, because the cross-section of the beams (possibly  variable) can be better adjusted to design 

requirements and conditioning (such as spans, applied loads, construction phasing, desired geometry for 

beams, etc.) as well as variations in calculation efforts over the spans. 

In this chapter steel beams with section in I are considered. In terms of notation, the following is adopted 

with respect to the geometric variables: 

𝑏fs , 𝑡fs width and thickness of the top flange 

𝑏fi , 𝑡fi width and thickness of the bottom flange 

ℎw, 𝑡w height and thickness of the web 

ℎws, ℎwi height of the top and bottom subpanels of the web, if a longitudinal stiffener is adopted 

𝑎   length of a web plate panel (corresponds to the distance between transverse stiffeners) 

𝑐  width "in cantilever" of a flange 

ℎ  total height of the beam cross-section (ℎ = ℎw + 𝑡fs + 𝑡fi) 

𝑙  span (distance between external supports)    
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2.2. Pre-design of a plate girder 

Plated girder structures are designed using several standards that should consider specifically the features 

related to plate buckling. The prEN 1993-1-5 [11] is the most recent European standard for the design and 

safety check of steel plates and plate-girders with and without longitudinal stiffeners. Before stating this 

evaluation, plated girder structures should be designed following some simple guidelines, as reviewed next. 

 

2.2.1. Plate girder slenderness 

As it is adopted in most situations, the pre-design of this type of structures starts with the definition of the 

chosen slenderness, that is, the ratio between the beam height and the span length, 𝜆 =
ℎ

𝑙
. This slenderness 

is inherent to the type of application and adopted static system; for plate-girder beams with different 

applications, the indicative values in Table 2.1 can be referred to. 

Table 2.1: Pre-design of plate-girders – Slenderness [15] 

𝝀 =
𝒉

𝒍
 Simply supported spans Continuous beams 

Industrial buildings 1/15 a 1/25 1/22 a 1/35 

Road bridges 1/15 a 1/20 1/20 a 1/30 

Railway bridges 1/10 a 1/15 1/12 a 1/20 

cranes 1/7 a 1/12 1/10 a 1/18 

 

2.2.2. Plate girder cross-section 

Having defined the height of the beam, the next step is the pre-design of its cross section, defined by the 

web´s thickness 𝑡𝑤 and the width and thickness of the upper and lower flanges, (𝑏𝑓𝑠, 𝑡𝑓𝑠) and (𝑏𝑓𝑖, 𝑡𝑓𝑖), 

respectfully. For the simple case of plate-girders with identical flanges the notation is simplified to (𝑏𝑓, 𝑡𝑓). 

For this case of a bi-symmetric beam, the following relations can be written: 

Web height Web area Flange area 
Height of the section referred to the 

midline of the flanges 

ℎ𝑤 = ℎ − 2𝑡𝑓 𝐴𝑤 = ℎ𝑤  𝑡𝑤 𝐴𝑓 = 𝑏𝑓 𝑡𝑓 𝑑 = ℎ𝑤 + 𝑡𝑓 ≈ ℎ𝑤 

where the moment of inertia and section modulus with respect to the strong axis, y axis, are given by: 

 

𝐼𝑦 = 2(
𝑏𝑓𝑡𝑓

3

12
+ 𝑏𝑓𝑡𝑓 (

ℎ𝑤
2
)

2

) +
𝑡𝑤ℎ𝑤

3

12
≅
ℎ𝑤

2

2
(𝐴𝑓 +

1

6
𝐴𝑤) 𝑊𝑦 =

𝐼𝑦
ℎ𝑤
2

≅ ℎ𝑤 (𝐴𝑓 +
1

6
𝐴𝑤) (2.1) 
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If no flange local buckling occurs, they should be limited to width/thickness ratios of Class 3 sections; knowing 

that these elements are subjected mainly to compression, it must be ensured for the flange under 

compression that: 

Where 𝑐 is the “cantilever” part of the compressed flange, approximately equal to the half-width of the flange 

considered, as shown in Figure 2.1. However, if high-strength steels are adopted, the flanges can be designed 

to be Class 4, under compression. 

According to EN 1993-1-5 [5], the web slenderness should be limited to the following limits, to avoid the 

design considering the local buckling induced by bending or shear: 

ℎ𝑤

𝑡𝑤
≤ 124 𝜀   for part subjected to bending 

(2.3) 
ℎ𝑤
𝑡𝑤

≤ 72 𝜀 for unstiffened webs subjected to shear and 

ℎ𝑤
𝑡𝑤

≤ 31 
𝜀

𝜂
 √𝑘𝜏 for stiffened webs subjected to shear 

 

where 𝑘𝜏 represents the shear buckling coefficient and 𝜂 is a coefficient that allows the reserve of plastic 

resistance to be considered in addition to the yield strength to shear, normally observed in slender webs. 

These coefficients are introduced in Chapter 3. However, many plate girders used in bridge decks have a 

slenderness higher than these limits, namely if high strength steel is adopted. To avoid a design using HSS 

plate girder with very slender web panels, one or more longitudinal stiffeners may be adopted. In that case, 

the slenderness limits introduced above are applied to each sub-panel. 

 

2.2.3.  Design of longitudinal and transverse stiffeners 

The main purpose of using longitudinal and transverse stiffeners on steel plate girders is to increase their 

ultimate strength, fundamentally, by increasing the local stability of the web plates to N, M and V loadings. 

Transverse stiffeners are always adopted in plate girders used in bridge decks. They are usually composed by 

flat stiffeners, or T sections, spaced at distances 𝑎, usually not higher than ℎ𝑤 at support sections, and at the 

limit between 1.5 ℎ𝑤  to 2 ℎ𝑤 at span sections. For the special case of steel and steel-concrete composite 

cable-stayed decks, the high compression along the span regions leads to transverse stiffeners equally spaced 

along the spans; typically, spaces between 1/3 to 1/4 of the distance between stay-cables at the deck level 

are adopted. 

Concerning the longitudinal stiffeners, when they are adopted, two main types can be selected: 

• Open stiffener (typically single flat stiffeners) 

• Closed stiffener (typically trapezoidal stiffeners) 

𝑐

𝑡𝑓
≤ 14 𝜀 𝜀 = √

235

𝑓𝑦
   with   𝑓𝑦  in  MPa (2.2) 
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For box-girder bridge decks, longitudinal stiffeners are placed inside the box section, usually at the bottom 

flange but also in the webs; as for I-girders, they are generally used in the inner side of the webs. However, 

in some cases, the closed stiffener can be located on the outside of the web´s girder, solving the problem of 

the intersection with the vertical stiffeners. The decision to stiffen the beam only on one side of the slab is 

purely for aesthetic purposes but, in some cases, it can be symmetrically welded to the plate, as shown in 

Figure 2.2. The number of stiffeners varies usually between 1, 2 or 3 open or closed sections. 

 

Figure 2.2: Types of longitudinal and transverse stiffeners 

 

The position of the longitudinal stiffener depends mainly on the loads to which the beam is subjected. In the 

case of being subjected only to a bending moment, it makes sense to place the longitudinal stiffener in the 

compressed web area. However, if both M and V have significant values, it is not so clear where to place the 

longitudinal stiffeners. When a high value of N is also present, as it occurs in cable-stayed decks, perhaps 

distributing the stiffeners equidistant from the plate height will lead to better results. Given that it is not clear 

what is the best option, Chapter 5 will include a discussion of what is the most adequate position when one 

longitudinal closed stiffener is adopted. 

The direction of the longitudinal stiffeners is usually horizontal. Recent studies have proposed placing the 

stiffeners along the tension or compression diagonal of each panel [16,17]. The structural advantages of such 

alternatives for slender longitudinal stiffened plate girders subjected to combined N-M-V loadings is still not 

clear. 

In terms of the stiffener’s slenderness, it is generally chosen to be Class 2 or 3, in order to avoid the local 

buckling of the stiffener that can aggravate the problem of stability of the panel. Considering the slenderness 

limits given by EN 1993-1-1 [18] for Class 3 sections, the following pre-design rules can be adopted: 

 

in which 𝑏𝑠 and 𝑡𝑠 are the width and the thickness of each panel that forms the longitudinal stiffener cross-

section.      

• Open stiffener 
𝑏𝑠
𝑡𝑠
≤ 14 𝜀 

(2.4) 

• Closed stiffener  
𝑏𝑠
𝑡𝑠
≤ 42 𝜀   

Closed Section 

Open Section 

Longitudinal stiffeners 

 

Reforços abertos 

 

Reforços abertos 

 

Reforços abertos 

Transverse stiffeners 

 

Reforços abertos 

 

Reforços abertos 

 

Reforços abertos 
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3. Behaviour of Plate Girders with Longitudinal Stiffeners 

This chapter presents the main characteristics and structural behaviour of longitudinally stiffened steel plate 

girders. This refers to the types of global and local buckling of the panels or sub-panels, subjected to individual 

or combined loads, and the way the ultimate strength of stiffened panels is evaluated according to  

EN 1993-1-5 [5]. 

 

3.1. Plate Buckling Background 

3.1.1. Local plate-like buckling between stiffeners 

The local buckling mode of a longitudinally stiffened panels is shown in Figure 3.1, which illustrates a panel 

subjected to uniform compression. The buckling of the sub-panels is observed between the longitudinal 

stiffener and the longitudinal edges of the plate. 

 

Figure 3.1: Local buckling mode between stiffeners of a stiffened plate under compression 

 

The critical stress associated with the local buckling between stiffeners is given by: 

𝜎𝑐𝑟.𝑙𝑜𝑐 = 𝑘𝜎 ×
𝜋2𝐸

12(1 − 𝑣2)
× (

𝑡𝑤
𝑏𝑖
)
2

 (3.1) 

 

where 𝑘𝜎 represents, in this case, the local buckling factor of the sub-panels, being dependent on the 

torsional stiffness of the longitudinal stiffeners. In order to comply with the provisions of EN 1993-1-5, if there 

is a uniform compression (𝜓=1), the torsional stiffness effect of the longitudinal stiffeners should be 

neglected, considering 𝑘𝜎 = 4 to obtain the local critical load of the sub-plate. 

However, although the contribution of the torsional rigidity of closed longitudinal stiffeners in the safety 

checks is usually neglected, it is clear that it exists if closed longitudinal stiffeners are adopted. 
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To analyse the buckling of plates with longitudinal stiffeners, two parameters are used: 

𝛾 =
𝐸𝐼𝑠𝑙
ℎ𝑤𝐷

,    with    𝐷 =
𝐸𝑡𝑤

3

12(1 − 𝑣2)
 (3.2) 

𝛿 =
𝐴𝑠𝑙
ℎ𝑤𝑡𝑤

 (3.3) 

where 𝛾 is the relative bending stiffness of the longitudinal stiffener and 𝛿 its axial stiffness. The calculation 

of 𝐼𝑠𝑙  and 𝐴𝑠𝑙 should be based on the cross section of the stiffener, illustrated on Figure 3.2, being that the 

second moment of area of the whole stiffened plate should be calculated for bending about the z-axis and 

on the centre of gravity of the stiffener and the associated portion of plate.  

 

Figure 3.2: Transversal Section considered in the calculation of 𝐼𝑠𝑙 and 𝐴𝑠𝑙 

The next step is to determine 𝜆̅𝑙𝑜𝑐, as well as 𝜌𝑙𝑜𝑐, necessary to obtain the effective areas of the sub-panels 

and stiffeners. According to EN 1993-1-5, and based on the Winter's formula, 

𝜆̅𝑙𝑜𝑐 = √
𝑓𝑦

𝜎𝑐𝑟.𝑙𝑜𝑐
 (3.4) 

▪ For internal compression elements 

𝜌𝑙𝑜𝑐 = 1 𝜆̅𝑙𝑜𝑐 ≤ 0.5 + √0.085 − 0.055𝜓 

(3.5) 

𝜌𝑙𝑜𝑐 =
𝜆̅𝑙𝑜𝑐 − 0.055(3 + 𝜓)

𝜆𝑙𝑜𝑐̅̅ ̅̅ ̅2
 𝜆̅𝑙𝑜𝑐 > 0.5 + √0.085 − 0.055𝜓 

▪ For outstand compression elements 

𝜌𝑙𝑜𝑐 = 1 𝜆̅𝑙𝑜𝑐 ≤ 0.748 

(3.6) 

𝜌𝑙𝑜𝑐 =
𝜆𝑙𝑜𝑐̅̅ ̅̅ ̅ − 0.188

𝜆𝑙𝑜𝑐̅̅ ̅̅ ̅2
 𝜆̅𝑙𝑜𝑐 > 0.748 
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3.1.2. Global column-like buckling behaviour 

The global column-like buckling behaviour of a stiffened plate corresponds to the case in which the width of 

the plate is large, and thus the side boundary restraints along the longitudinal edges of the plate have small 

influence in the central area of the stiffened plate. 

The elastic critical column buckling stress 𝜎𝑐𝑟. 𝑠𝑙 is then determined by the following equation: 

𝜎𝑐𝑟.𝑠𝑙 =
𝜋2 𝐸 𝐼𝑠𝑙,1
𝐴𝑠𝑙,1 𝑎

2
 (3.7) 

where 𝐴𝑠𝑙,1 and  𝐼𝑠𝑙,1 correspond to, respectively, the gross cross-sectional area and the second moment of 

area of the stiffener and the adjacent parts of the plate. These values are determined accordingly to 

prEN 1993-1-5 [11] shown in Figure 3.3. 

 

Figure 3.3: Notations and effective widths for longitudinally stiffened plates [5]. 

If the compression varies linearly (𝜓≠1), it is necessary to affect the equation by a scaling factor so that 𝜎𝑐𝑟. 𝑐 

is relative to the most compressed fibre: 

𝜎𝑐𝑟.𝑐 = 𝜎𝑐𝑟.𝑠𝑙 ×
𝑏𝑐
𝑏𝑠𝑙.1

 (3.8) 
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This stress corresponds to a normalized column slenderness, 𝜆𝑐, being the reduction factor 𝜒𝑐  given by: 

𝜆̅𝑐 = √
𝑓𝑦

𝜎𝑐𝑟.𝑐
 𝜒𝑐 =

1

𝜙 + √𝜙2 − 𝜆̅𝑐
2
 𝜙 = 0.5 [𝜆̅𝑐

2 + 𝛼𝑐  (𝜆̅𝑐 − 0.2) + 1] (3.9) 

where 𝛼𝑐  is the equivalent column imperfection factor, given by  

𝛼𝑐 = 𝛼̅ +
0.09 𝑒

𝑖
 

𝛼̅ = 0.34 for closed section stiffeners (b curve) 

𝛼̅ = 0.49 for open section stiffeners (c curve) 

𝑖 = √
𝐼𝑠𝑙,1
𝐴𝑠𝑙,1

 (3.10) 

and 𝑒 is the largest distance from the centroids of the plating and the one-sided stiffener to the neutral axis 

of the effective column. 

 

3.1.3. Global plate-like buckling behaviour 

The global plate-like buckling corresponds to the joint buckling of the plate with the longitudinal stiffener as 

shown in Figure 3.4. The Annex A of EN 1993-1-5 gives different simplified formulas to calculate the critical 

stress associated with this global mode as a function of the number of longitudinal stiffeners available. As 

one longitudinal stiffener is adopted, only the corresponding formulas are introduced in the sequence. 

 

Figure 3.4: Global plate buckling of a stiffened plate 

The critical stress for the global plate-like buckling of a plate with one stiffener is given by: 

𝜎𝑐𝑟.𝑝 = 𝜎𝑐𝑟.𝑠𝑙 =
1.05 𝐸

𝐴𝑠𝑙.1
×
√𝐼𝑠𝑙.1 𝑡𝑤

3ℎ𝑤  

𝑏𝐼 𝑏𝐼𝐼
 𝑓𝑜𝑟 𝑎 ≥ 𝑎𝑐 

𝑎𝑐 = 4.33 × √
𝐼𝑠𝑙.1 𝑏𝐼

2 𝑏𝐼𝐼
2

𝑡𝑤
3  ℎ𝑤

4

 (3.11) 

𝜎𝑐𝑟.𝑝 = 𝜎𝑐𝑟.𝑠𝑙 =
𝜋2 𝐸 𝐼𝑠𝑙.1
𝐴𝑠𝑙.1 𝑎

2
+

𝐸 𝑡𝑤
3  ℎ𝑤  𝑎

2

4𝜋2 (1 − 𝑣2) 𝐴𝑠𝑙.1 𝑏𝐼
2 𝑏𝐼𝐼

2  𝑓𝑜𝑟 𝑎 < 𝑎𝑐 
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The critical stress of the stiffened plate is given by the lowest value between the critical stress associated 

with the buckling of each sub-panels and the global plate buckling. 

If the compression varies linearly (𝜓≠1), it is necessary to affect the equation by a scaling factor so that 𝜎𝑐𝑟. 𝑝 

is relative to the most compressed fibre: 

𝜎𝑐𝑟. 𝑝 = 𝜎𝑐𝑟. 𝑠𝑙 ×
𝑏𝑐
𝑏𝑠𝑙.1

 (3.12) 

It is verified that when the distance 𝑏𝑠𝑙.1 from the stiffener to the neutral axis tends to zero, then 𝜎𝑐𝑟. 𝑝 tends 

to infinity, which corresponds to considering that global plate buckling does not occur because the stiffener 

is not fully compressed. In this case, the conditioning mode is the local buckling mode of the 𝑏1 width sub-

panel. The same happens if the width of the compressed sub-panel 𝑏1 tends to zero. In this case, 𝑎𝑐  would 

equally tend to zero and, consequently, 𝜎𝑐𝑟.𝑠𝑙 to infinity. This situation would correspond to not having a 

compressed web, in which case the buckling could not take place, which sometimes occurs in the cross 

sections of the span of the steel-concrete composite beams where the neutral line is sometimes located in 

the transition of the web with the upper flange. 

As it was previously presented, for the normalized slenderness and for the reduction factor of the local 

buckling mode, the orthotropic stiffened plate has a critical tension given by 𝜎𝑐𝑟.𝑝, which corresponds to a 

normalized slenderness defined by: 

𝜆̅𝑝 = √
𝛽𝐴.𝑐𝑓𝑦

𝜎𝑐𝑟.𝑝
 (3.13) 

The adaptation of Winter's formula remains valid in this case according to Eqs. (3.5) and (3.6), replacing the 

parameters 𝜆̅𝑙𝑜𝑐  and 𝜌𝑙𝑜𝑐  by 𝜆̅𝑝 and 𝜌, respectively. 

 

3.1.4. Interpolation between plate-like and column-like buckling modes 

There have been detailed studies based on the investigation of the interpolation between the different 

buckling modes of a longitudinally stiffened plates [19]. Currently, the design methodology for longitudinally 

stiffened plates is found in EN 1993-1-5 [5], where the existence of plate-like and column-like behaviour as 

well as an interactive behaviour is implicit. This distinction is based on the ratio 
𝜎𝑐𝑟.𝑝

𝜎𝑐𝑟.𝑐
, wherein if the stress 

ratio is small, a column-like behaviour can be assumed therefore, no post-buckling reserve (normally 

exhibited when the aspect ratio is relatively small, 
𝑎

𝑏
< 1). On the contrary, if the ratio is high enough, a plate-

like behaviour can be assumed, consequently considering a significant post-buckling reserve. 

Firstly, the reduction factors based on plate-like behaviour (𝜌) and column-like behaviour (𝜒𝑐) are computed, 

as indicated in EN 1993-1-5 [5]. The actual behaviour is frequently somewhere in between these, as normally 

𝜎𝑐𝑟.𝑝 > 𝜎𝑐𝑟.𝑐  , we can deduce that 𝜒𝑐 < 𝜌𝑐 < 𝜌 where 𝜌𝑐  is the final reduction factor.   
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From this expression, in a very conservative way, it is possible to verify that the ultimate strength of the 

stiffened plate can always be determined using 𝜌𝑐 = 𝜒𝑐 . In this way the postcritical resistance of the 

longitudinally stiffened plate in global plate buckling is neglected, only remaining present the postcritical 

resistance of the sub-panels. To determine the actual reduction factor (𝜌𝑐), the interpolation formula is given 

by: 

𝜌𝑐 = (𝜌 − 𝜒𝑐) 𝜉 (2 − 𝜉) + 𝜒𝑐  (3.14) 

where 𝜉 is a way to measure the distance between the elastic critical column and plate buckling stresses: 

𝜉 =
𝜎𝑐𝑟.𝑝

𝜎𝑐𝑟.𝑐
− 1 0 ≤ 𝜉 ≤ 1 (3.15) 

The graphical interpretation of 𝜌𝑐  is shown in Figure 3.5. 

 

Figure 3.5: Interpolation between plate-like and column-like behaviour [20] 

• If 𝜉 > 1, we have 𝜌𝑐 =  𝜌, which tends to happen for long and narrow plates where the ratio 

 
𝜌

𝜒𝑐
> 2, meaning that the global column buckling behaviour can be neglected and the ultimate 

resistance of the panel is given by 𝜎𝑐𝑟.𝑝 . 

• If 0 ≤ 𝜉 ≤ 1, usually the case of approximately square plates (
 𝑎

𝑏
≈ 1), it is necessary to consider the 

interpolation between column and plate-like modes, obtaining the final reduction coefficient. 

• Lastly if 𝜉 = 0, in the case of shorter plates (𝜎𝑐𝑟.𝑝 ≈ 𝜎𝑐𝑟.𝑐) corresponds to a reduction factor of  

𝜌𝑐 = 𝜒𝑐 . 

 

3.2. Resistance due to direct stresses – Different methods 

In the next sections, it is intended to present in detail, the methodology for the ultimate strength of a 

longitudinally stiffened steel plate, submitted separately to compression, bending and shear, as per the 

prEN 1993-1-5 [11]. The structural design of these longitudinally stiffened slender beams is done according 

to this standard following two different methods: 

I. Effective Width Method (EWM) 

II. Reduced Stress Method (RSM) 

In Portugal, the effective width method is preferred for evaluating the ultimate strength of stiffened plates 

however, for this work, the reduced stress method will be investigated as well. 
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The first method (EWM) is based on the calculation of an effective cross-section, referred in von Karman et 

al [21], and assumes that certain parts of the cross-section remain effective and other regions are ineffective. 

This method has the great advantage of considering the effect of non-linear stress redistribution that occurs 

after the web local buckling but imposes the need for a separate and global interaction check if different 

loads are applied to the plate girder. 

The second method (RSM) has the advantage of determining the plate slenderness based on a linear 

(reduced) stress distribution, obtained by the complete stress field applied to the plate. This formulation thus 

avoids the need for plate interaction checks. The downside of this method is that is does not considers the 

stress shedding between the web and adjacent flanges, therefore neglecting the favourable contribution of 

the flanges to withstand part of the applied stresses once the web starts bucking. 

 

3.3. Formulation based on the Effective Width Method (EWM) 

3.3.1. Axial force (N) – Panels subjected to uniform compression 

To determine the resistance of a class 4 cross section under direct stresses, all details are given in  

EN 1993-1-5 [5]. For the calculation of the design axial force resistance, 𝑁𝑏.𝑅𝑑 , the effective area should be 

considered, by using: 

𝑁𝑏.𝑅𝑑 =
𝐴𝑐.𝑒𝑓𝑓  𝑓𝑦

𝛾𝑀1
 𝐴𝑐.𝑒𝑓𝑓 = 𝜌𝑐  𝐴𝑐.𝑒𝑓𝑓.𝑙𝑜𝑐 +∑𝑏𝑒𝑑𝑔𝑒.𝑒𝑓𝑓  𝑡𝑤 

(3.16) 

𝐴𝑐.𝑒𝑓𝑓.𝑙𝑜𝑐 =∑(𝐴𝑠𝑙.𝑒𝑓𝑓 + 𝜌𝑙𝑜𝑐  𝑏𝑐.𝑙𝑜𝑐  𝑡𝑤)

𝑖

 𝐴𝑠𝑙.𝑒𝑓𝑓 = 𝜌𝑙𝑜𝑐  𝐴𝑠𝑙 

where 𝑏𝑒𝑑𝑔𝑒.𝑒𝑓𝑓 =
𝑏𝑒𝑓𝑓

2
, 𝐴𝑐.𝑒𝑓𝑓.𝑙𝑜𝑐  is the area composed of the effective sections of all the longitudinal 

stiffeners and sub-plates, except for the effective parts supported on the longitudinal edges, as shown in 

Figure 3.6, and 𝐴𝑠𝑙.𝑒𝑓𝑓 is the sum of effective sections of all longitudinal stiffeners that are fully in the 

compression zone. 

 

Figure 3.6: Stiffened plate submitted to uniform compression – effective widths  
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The normalized column slenderness and plate slenderness, respectively 𝜆̅𝑐 and 𝜆̅𝑝 , are obtained from the 

equations (3.17) and Erro! A origem da referência não foi encontrada.). To consider the effective areas due 

to the local buckling of sub-panels, these normalized slendernesses are given by: 

𝜆̅𝑐 = √
𝑁𝑦

𝑁𝑐𝑟.𝑐
= √

𝐴𝑐.𝑒𝑓𝑓.𝑙𝑜𝑐  𝑓𝑦

𝐴𝑐  𝜎𝑐𝑟.𝑐
= √

𝛽𝐴.𝑐  𝑓𝑦

𝜎𝑐𝑟.𝑐
 (3.17) 

𝜆̅𝑝 = √
𝑁𝑦

𝑁𝑐𝑟.𝑝
= √

𝐴𝑐.𝑒𝑓𝑓.𝑙𝑜𝑐  𝑓𝑦

𝐴𝑐  𝜎𝑐𝑟.𝑝
= √

𝛽𝐴.𝑐  𝑓𝑦

𝜎𝑐𝑟.𝑝
 (3.18) 

with  

𝛽𝐴.𝑐 =
𝐴𝑐.𝑒𝑓𝑓.𝑙𝑜𝑐

𝐴𝑐
 (3.19) 

3.3.2. Bending moment (M) – Panels subjected to non-uniform compression 

The ultimate strength of stiffened panels under variable compression, such as webs with longitudinal 

stiffeners in entire web beams when subjected to a bending moment, are calculated similarly to the previous 

section. Both the critical column stress, 𝜎𝑐𝑟.𝑐 and the critical plate stress, 𝜎𝑐𝑟.𝑝 ,are relative to the critical 

stress of the plate's most compressed edge. 

To determining the panel's resistance to bending moment, only the area of the section located in the 

compressed zone is accounted for in the definition of the area 𝐴𝑐, from which the effective area 𝐴𝑐.𝑒𝑓𝑓.𝑙𝑜𝑐  is 

derived. In turn, obtaining the reduction coefficient 𝜌 and the associated effective width of the compressed 

zone of the web, as well as distributing this effective width according to Figure 3.3, based on the standard EN 

1993-1-5 [5], required for the calculation of the ultimate resistance to bending. 

The corresponding resistant bending moment about the 𝑦 direction of the longitudinally stiffened plate is 

given by: 

𝑀𝑒𝑓𝑓.𝑦 =
𝑊𝑒𝑙.𝑒𝑓𝑓.𝑦 × 𝑓𝑦

𝛾𝑀1
 with 𝑊𝑒𝑙.𝑒𝑓𝑓.𝑦 =

𝐼𝑒𝑓𝑓.𝑦

max(𝑦𝑠𝑢𝑝; 𝑦𝑖𝑛𝑓)
 (3.20) 

where 𝑊𝑒𝑙.𝑒𝑓𝑓.𝑦 represents the effective elastic section modulus, 𝐼𝑒𝑓𝑓.𝑦 the second moment of area of the 

effective cross section with respect to the y direction, and finally 𝑦𝑠𝑢𝑝 and 𝑦𝑖𝑛𝑓  are the distances from the 

longitudinal edges to the centre of gravity of the effective transverse section. 

 

3.3.3. Shear (V) – Panels subjected to pure shear 

The ultimate resistance of longitudinally stiffened plates to shear has a calculation methodology based on 

the rotated stress field method, as defined in EN 1993-1-5 [5]. It should be noted that it is only necessary to 

assess the resistance of the web considering shear buckling if the plate slenderness is greater than: 
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Unstiffened Plates:  
ℎ𝑤
𝑡𝑤

> 31
𝜀

𝜂
√𝑘𝜏 (3.21) 

Stiffened Plates 
ℎ𝑤
𝑡𝑤

> 72
𝜀

𝜂
 (3.22) 

 

The ultimate resistance to shear of these types of slender beams, regardless of whether they are stiffened or 

not, is fundamentally given by the ultimate resistance to shear, since the contribution of the flanges is 

relatively small, and often neglected in design practice. 

If the plate has longitudinal stiffeners, there is a gain in the web´s resistance to shear due to the additional 

support given by these stiffeners that “delay” the buckling of the web, dividing them into two sub-panels. 

According to prEN 1993-1-5 [11], the ultimate design resistance of the web to shear is given by: 

𝑉𝑏.𝑅𝑑 = 𝑉𝑏𝑤.𝑅𝑑 + 𝑉𝑏𝑓.𝑅𝑑 ≤ 𝑉𝑝𝑙𝑤.𝑅𝑑    and 𝑉𝑝𝑙𝑤.𝑅𝑑 = 𝜂 ×
ℎ𝑤 𝑡𝑤 𝑓𝑦

√3 × 𝛾𝑀1
 (3.23) 

 

where 𝑉𝑏𝑤.𝑅𝑑  represents the ultimate strength of the web plate, regardless of whether it is stiffened or not, 

and which includes the pre-critical and post-critical contributions associated with 𝜏𝑐𝑟  and the diagonal tensile 

field, and 𝑉𝑏𝑓.𝑅𝑑  the contribution of the flanges, resulting from the formation of plastic hinges in the flanges. 

𝑉𝑝𝑙𝑤.𝑅𝑑 will always be limited to 𝑉𝑝𝑙𝑤.𝑅𝑑, the web plastic resistance to shear, where 𝜂 indirectly takes into 

account the hardening of the steel in slightly slender plates, which translates into a substantial increase in 

the plastic resistance of the stiffened plate. 

𝜂 = 1.2 for 𝑓𝑦 ≤ 460 𝑀𝑃𝑎 𝜂 = 1 for 𝑓𝑦 > 460 𝑀𝑃𝑎 

 

In the present investigation, given that a high strength steel S690 is used, 𝜂 = 1.0. 

 

• Contribution of the web 

The web's contribution considers both elastic and post-buckling resistance, and it is given by: 

𝑉𝑏𝑤.𝑅𝑑 = 𝜒𝑤 ×
ℎ𝑤  𝑡𝑤  𝑓𝑦

√3 × 𝛾𝑀1
 (3.24) 

Where 𝜒𝑤 is the shear buckling factor, dependent on the web normalised slenderness 𝜆𝑤̅̅̅̅  and on the type of 

end post being used, according to Table 3.1. In the case of longitudinally stiffened web panels with closed 

section stiffeners, connected to the end stiffeners and the transversal stiffeners, the end support can always 

be considered as rigid. The difference between a rigid and a non-rigid end post is the way the diagonal stress 

field is anchored. 
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Table 3.1: Contribution from the web to the shear buckling resistance according to prEN 1993-1-5 [11] 

𝜆𝑤̅̅̅̅ = 0.76√
𝑓𝑦𝑤

𝜏𝑐𝑟
 Non-rigid end post Rigid end post 

𝜆𝑤̅̅̅̅ <
0.83

𝜂
 𝜂 𝜂 

0.83

𝜂
< 𝜆𝑤̅̅̅̅ < 1.08 

0.83

𝜆𝑤̅̅̅̅
 

0.83

𝜆𝑤̅̅̅̅
 

𝜆𝑤̅̅̅̅ > 1.08 
0.83

𝜆𝑤̅̅̅̅
 

1.37

0.7 + 𝜆𝑤̅̅̅̅
 

 

For webs with lower slenderness, 𝜆𝑤̅̅̅̅ < 1.08, the stiffness of the end stiffeners has no bearing on the 

coefficient 𝜒𝑤. On the other hand, for slender webs, 𝜆𝑤̅̅̅̅ > 1.08, the end support influences much the 

determination of 𝜒𝑤 since it is in these cases that the post-critical resistance to shear load is more significant.  

To obtain the normalized slenderness, 𝜆𝑤̅̅̅̅ , firstly, the elastic critical buckling stress, 𝜏𝑐𝑟 , should be evaluated 

according to EN 1993-1-5 [5], given by: 

𝜏𝑐𝑟 = 𝑘𝜏 𝜎𝐸 𝜎𝐸 =
𝜋2 𝐸 𝑡𝑤

2

12(1 − 𝑣2)𝑏𝑖
2 (3.25) 

being 𝑘𝜏 the buckling shear coefficient, dependent on the web panel´s aspect ratio and evaluated assuming 

simply supported edges, as given by prEN 1993-1-5 [11]: 

i. For plates with one or two longitudinal stiffeners and 
𝑎

ℎ𝑤
< 3  

𝑘𝜏 = 4,1 +
6,3 + 0.18 ×

𝛽𝑠𝑙  𝐼𝑠𝑙.𝑉
𝑡𝑤
3  ℎ𝑤

𝛼2
+ 2,2√

𝛽𝑠𝑙  𝐼𝑠𝑙.𝑉
𝑡𝑤
3  ℎ𝑤

3

 (3.26) 

 

ii. For plates without longitudinal stiffeners or with more than two longitudinal stiffeners  

𝑘𝜏 = 5,34 + 4 ∙ (
ℎ𝑤
𝑎
)
2

+ 𝑘𝜏𝑠𝑙  𝛼 ≥ 1 

𝑘𝜏,𝑠𝑙 = 𝑚𝑎𝑥 {9 (
ℎ𝑤
𝑎
)
2

(
𝛽𝑠𝑙𝐼𝑠𝑙
ℎ𝑤𝑡

3
)
0.75

;
2.1

𝑡
(
𝛽𝑠𝑙𝐼𝑠𝑙
ℎ𝑤

)

1
3

} (3.27) 

𝑘𝜏 = 4 + 5,34 ∙ (
ℎ𝑤
𝑎
)
2

+ 𝑘𝜏𝑠𝑙  𝛼 < 1 

 

If using sub-panels, the shear buckling coefficient of longitudinal stiffeners is neglected, otherwise: 

𝛽𝑠𝑙 = 1 for open-section longitudinal stiffeners 

𝛽𝑠𝑙 = 3 for closed-section longitudinal stiffeners 

and being 𝐼𝑠𝑙  the sum of the moment of inertia of the individual stiffeners with respect to the z-z axis 

according to Figure 3.7. 
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Figure 3.7: Calculation of 𝐼𝑠𝑙  

• Contribution of the flanges 

As previously mentioned, the contribution of the flanges to the ultimate resistance is relatively small 

compared to the web and is often neglected, especially when the beam is subjected to high bending 

moments. The contribution of the flanges is linked to the formation of plastic hinges, located in the flanges, 

where the diagonal stress field is anchored, as illustrated in Figure 3.8. 

 

Figure 3.8: Plastic hinges in flanges 

The contribution of the flanges, according to prEN 1993-1-5 [11] is given by: 

𝑉𝑏𝑓.𝑅𝑑 =
𝑏𝑓  𝑡𝑓

2 𝑓𝑦𝑓

𝑐 𝛾𝑀1
[1 − (

𝑀𝐸𝑑

𝑀𝑓.𝑅𝑑
)

2

] (3.28) 

where 𝑏𝑓 and 𝑡𝑓 are the flange dimensions with the smallest area 𝐴𝑓, and 𝑏𝑓 must not exceed 15𝜀𝑡𝑤 on each 

side of the web. The distance between the plastic hinges, c, is obtained by: 

𝑐 = 𝑎 (0.25 +
1.6 𝑏𝑓  𝑡𝑓

2 𝑓𝑦𝑓

𝑡𝑤  ℎ𝑤
2  𝑓𝑦𝑤

) (3.29) 

Alternatively, although not in prEN 1993-1-5 [11], there have been several alternative proposals to evaluate 

this distance 𝑐 [12], as a function of the web normalised slenderness, by: 

André Reis 𝑐 = 𝑎 (0.25 +
1.6𝑏𝑓𝑡𝑓

2𝑓𝑦𝑓

𝑡𝑤ℎ𝑤
2 𝑓𝑦𝑤

) (2.8 − 0.6 × 𝜆𝑤̅̅̅̅ ) 

(3.30) 

André Biscaya 𝑐 = 𝑎 (0.02 +
20𝑏𝑓𝑡𝑓

2𝑓𝑦𝑓

𝜆𝑤̅̅̅̅ 𝑡𝑤ℎ𝑤
2 𝑓𝑦𝑤

) 
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In section 5.1, the differences obtained between these three ways of estimating the distance 𝑐 are evaluated. 

 

3.3.4. N-M-V interaction according to the prEN 1993-1-5 

The interaction between loadings in stiffened plates subjected to combined N-M-V loadings and their 

ultimate strength following the EWM are determined according to the interaction equations given by the 

prEN 1993-1-5 [11]. Regarding the section where the verification of the interaction must be carried out, it is 

indicated that this must be done for the loads calculated at a distance corresponding to the min(0.5ℎ𝑤;0.4𝑎) 

of the most loaded section, where 𝑎 is the length of the plate panel between transverse stiffeners. 

Before evaluating the safety for the interaction of N-M-V loadings, it is necessary to ensure that each strength 

ratio between the acting forces separately and the corresponding design resistances are 
𝑁𝐸𝑑

𝑁𝑅𝑑
,
𝑀𝐸𝑑

𝑀𝑅𝑑
,
𝑉𝐸𝑑

𝑉𝑅𝑑
≤ 1. 

In the presence of an compression force, and not considering the eccentricity with respect to the local 

buckling, 𝑒𝑁, the prEN 1993-1-5 [11] provides the relations between acting and resisting forces as  

𝜂1 =
𝑀𝐸𝑑

𝑀𝑒𝑓𝑓.𝑅𝑑
, 𝜂2 =

𝐹𝐸𝑑

𝐹𝑅𝑑
, 𝜂̅3 =

𝑉𝐸𝑑

𝑉𝑏𝑤.𝑅𝑑
 and 𝜂4 =

𝑁𝐸𝑑

𝑁𝑒𝑓𝑓.𝑅𝑑
, which separately must not be greater than 1.0. 

According to EN 1993-1-5, the combined effects of N-M-V loadings in the web should satisfy: 

𝜂1 + 𝜂4 + (1 − 𝜂1.𝑓)  (2𝜂̅3 − 1)
𝜇 = 1  𝜂1 ≥ 𝜂1.𝑓  (3.31) 

𝜂̅3 = 𝜂̅3
𝑚á𝑥 +

𝑉𝑏𝑓.𝑅𝑘

𝑉𝑏𝑤.𝑅𝑘
  {1 − [

𝑀𝐸𝑑

𝑀𝑓.𝑅𝑑 . (1 −
𝑁𝐸𝑑

2. 𝑁𝑓.𝑅𝑑
)
]

2

} 

 

 𝜂1 < 𝜂1.𝑓 
(3.32) 

where 𝜂̅3
𝑚á𝑥  corresponds to the maximum value of 𝜂̅3, obtained from Eq (3.30), and where 𝑁𝑓.𝑅𝑑  includes 

only the ultimate compressive strength of a single flange, hence being multiplied by the factor 2. 

The remaining parameters are given by: 

▪ 𝜂1.𝑓 =
𝑀𝑓.𝑅𝑘(1−

𝑁𝐸𝑑
2.𝑁𝑓.𝑅𝑑

)

𝑀𝑒𝑓𝑓.𝑅𝑘.(1−𝜂4)
  if the web is not fully in compression 

(3.33) 
▪ 𝜂1.𝑓 = 0  if the web is fully in compression 

▪ 𝜇 = (𝜂1.𝑓 + 0.2)
15
+ 1 

When subjected to a large axial force and the entire web is compressed, the flange plastic bending resistance 

𝑀𝑓.𝑅𝑘 = 0, resulting in the modified design equation: 

𝜂1 + (2𝜂̅3 − 1)
𝜇 = 1 (3.34) 

This different treatment between loading cases creates a drop on the interaction surface, making it 

discontinuous as shown in Figure 3.9. 
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Figure 3.9: N-M-V interaction surface from the prEN1993-1-5 [11] 

 

3.3.5. N-M-V interaction according to Biscaya’s proposal 

The behaviour of slender beams to the N-M-V interaction was investigated by Biscaya [12], who verified 

inconsistencies between the interaction surface defined in prEN 1993-1-5 [11] and the surface obtained 

through numerical and experimental trials. Thus, he developed and tested a new formulation using numerous 

case studies in S355 steel. In Chapter 5, the main objective is to compare results of the numerical model of a 

S690 high-strength steel beam, with longitudinal stiffeners in six different positions. 

This new proposal for the design of plate girders subjected together to an axial force, a bending moment and 

a shear force considers the following ratios of active and resistant forces: 

𝜂1.𝑀 =
𝑀𝐸𝑑 + 𝑁𝐸𝑑 . 𝑒𝑁

𝑀𝑒𝑓𝑓.𝑅𝑑

 𝜂̅3 =
𝑉𝐸𝑑
𝑉𝑏𝑤,𝑅𝑑

 𝜂1.𝑁 =
𝑁𝐸𝑑

𝑁𝑒𝑓𝑓.𝑅𝑑
 (3.35) 

that must never be higher than 1.0.  

Considering an axial force in compression (𝑁𝐸𝑑 > 0) and 𝜂̅3 ≥ 0.5𝑘, the new surface that ensures the safety 

for the interaction N-M-V corresponds to the following expressions: 

𝜂1.𝑀 + 𝜂1.𝑁 + (1 −
𝑀f,N,Rk

𝑀eff,Rk

− 𝜂1.𝑁) (
2𝜂̅3
𝑘
− 1)

𝜇

≤ 1  𝜂1.𝑀 ≥
𝑀f,N,Rk

𝑀eff,Rk
 (3.36) 

𝜂̅3 ≤ 𝑘 +
𝑉bf,N,Rk
𝑉bw,Rk

 [1 − (
𝑀Ed

𝑀f,N,Rd

)

2

]  𝜂1.𝑀 <
𝑀f,N,Rk

𝑀eff,Rk
 (3.37) 
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with 𝑘 given by:  

   𝑘 =   

{
 
 
 

 
 
 

 

1 𝜂1.𝑁 ≤ (
Vb,Rk
𝑉bw,Rk

− 1) 𝑖⁄  

(3.38) 
𝑉b,Rk
𝑉bw,Rk

− 𝑖 ∙ 𝜂1.𝑁 (
Vb,Rk
𝑉bw,Rk

− 1) 𝑖⁄ < 𝜂1.𝑁 ≤
𝑁f,Rk
𝑁eff,Rk

 

√
1 − 𝜂1.𝑁

𝛽

𝜉
 𝜂1.𝑁 >

𝑁f,Rk
𝑁eff,Rk

 

where: 

𝑀f,N,Rk is the characteristic resistant bending moment of the effective flanges to take into account the 

axial force installed in the flanges: 𝑀𝑓,𝑁,𝑅𝑘 = 𝑀𝑓,𝑅𝑘 (1 −
𝑁𝐸𝑑

𝑁𝑓,𝑅𝑑
), if 𝑁𝐸𝑑 ≤ 𝑁𝑓,𝑅𝑑  ; otherwise, 𝑀𝑓,𝑁,𝑅𝑘 = 0. 

To apply this formulation, the slenderness should be 𝜆̅ = 𝜆̅𝑝 = √
𝛽𝐴.𝑐 𝑓𝑦

𝜎𝑐𝑟.𝑝
 in the case of non-stiffened plate-

girders while, for longitudinally stiffened plates, the slenderness should be determined by 

𝜆̅ = max (𝜆̅𝑙𝑜𝑐 = √
𝑓𝑦

𝜎𝑐𝑟.𝑙𝑜𝑐
;  𝜆̅𝑝 = √

𝛽𝐴.𝑐 𝑓𝑦

𝜎𝑐𝑟.𝑝
 ). The two normalised slendernesses are obtained considering the 

web in pure compression, given that they are based in the N-V interaction. 

 

3.4. Formulation of the Reduced Stress Method (RSM) 

The RSM is based on the von-Mises criterion; it allows to consider the effect of different loadings, without 

the need for an additional interaction verification [23,24]. 

To begin with, the minimum load amplifier for the design loads to reach the characteristic value of the 

resistance 𝛼𝑢𝑙𝑡,𝑘 and the minimum load amplifier for the design loads to reach the elastic critical value of the 

plate 𝛼𝑐𝑟  are determined.  

𝑀𝑒𝑓𝑓,𝑅𝑘 = 𝑊𝑒𝑓𝑓 × 𝑓𝑦 𝑁𝑓,𝑅𝑘 = (𝐴𝑓1 + 𝐴𝑓2) × 𝑓𝑦𝑓 𝜇 = (
𝑀f,N,Rk

𝑀eff,Rk

+ 0.2)

15

+ 1 (3.39) 

𝑉𝑏𝑤,𝑅𝑘 and 𝑉𝑏𝑓,𝑅𝑘 are calculated by Eq. (3.24) and Eq. (3.28) (considering 𝑀𝐸𝑑 = 0, 𝛾𝑀1 = 1) and 

𝑉𝑏,𝑅𝑘 is obtained by Eq. (3.23) 

𝑉𝑏𝑓,𝑁,𝑅𝑘 = 𝑉𝑏,𝑅𝑘(1 − 𝑖. 𝜂1.𝑁) − 𝑉𝑏𝑤,𝑅𝑘 ≥ 0 𝑖 =
1

2
− 𝑒−𝜆 ≥ 0 (3.40) 

𝛽 = 1 +
1

𝜆2̅
≤ 2 𝜉 =

1 − (
𝑁𝑓,𝑅𝑘
𝑁𝑒𝑓𝑓.𝑅𝑘

)
𝛽

(1 − 𝑖.
𝑁𝑓,𝑅𝑘
𝑁𝑒𝑓𝑓.𝑅𝑘

)
2 (3.41) 



23 

As shown in Figure 3.10, the web normal stresses due to the compression (𝜎𝑁) and the bending (𝜎𝑀) and the 

shear stress (𝜏𝑉) can be written as function of the load amplifier 𝛼 (in 
𝑁

𝑚𝑚2
) and the interaction angles 𝜃1 and 

𝜃2 by: 

 

 

Figure 3.10: Graphical representation of stress amplifier 𝛼 and interaction angles 𝜃 

Adopting the von-Mises criterion, the lowest value of the load amplifier, 𝛼𝑢𝑙𝑡,𝑘, is then given by:  

The values of the elastic critical load amplifier, 𝛼𝑐𝑟 , are obtained using the EBPlate software [25], introduced 

in detail in Chapter 6. Having this value for the different N-M-V loadings, the relative plate slenderness is 

given by: 

Finally, the load amplifier to reach the characteristic resistance, 𝛼𝑟𝑘, is obtained by: 

where the reduction factors of plate-like buckling due to normal stresses (𝜌𝑥,𝑐) and shear-like buckling (𝜒𝑤) 

are determined according to prEN 1993-1-5 [11], as summarised in Figure 3.11, with 𝜎𝑥,𝐸𝑑 = 𝜎𝑁 + 𝜎𝑀 and 

𝜏𝐸𝑑 = 𝜏𝑉, and 𝜎𝑧,𝐸𝑑 = 0, as in all case studies no biaxial compression is applied. 

  {

𝜎𝑁 = 𝛼 × 𝑐𝑜𝑠𝜃1 × 𝑐𝑜𝑠𝜃2 = 𝛼𝑐𝜃,𝑁
𝜎𝑀 = 𝛼 × 𝑠𝑒𝑛𝜃1 × 𝑐𝑜𝑠𝜃2 = 𝛼𝑐𝜃,𝑀

𝜏𝑉 = 𝛼 × 𝑠𝑒𝑛𝜃2 = 𝛼𝑐𝜃,𝑉

} (3.42) 

𝛼𝑢𝑙𝑡,𝑘 = 𝑓𝑦 × √
1

3(𝑐𝜃,𝑉)
2
+ (𝑐𝜃,𝑁 + 𝑐𝜃,𝑀)

2 (3.43) 

𝜆̅𝑝 = √
𝛼𝑢𝑙𝑡,𝑘
𝛼𝑐𝑟

 (3.44) 

𝛼𝑟𝑘 = 𝑓𝑦 × √

1

3 (
𝑐𝜃,𝑉
𝜒𝑤

)
2

+ (
𝑐𝜃,𝑁 + 𝑐𝜃,𝑀

𝜌
)
2 (3.45) 
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Figure 3.11: Flowchart for the application of the RSM according to the prEN 1993-1-5 [11]  

 

For stiffened plates, global buckling of the stiffened plate and of each individual sub-panel should be 

verified. 
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4. Numerical Modelling 

This chapter presents the numerical models that best represent the behaviour of the structure when 

subjected to certain loads, and therefore gives good estimates of the value of the ultimate strength of the 

plate girder with longitudinal stiffeners. Hereupon, it was necessary to perform a physical and geometrically 

non-linear analysis. 

Several numerical models were built up using the multi-purpose code Abaqus-Python [26] interpreter and 

Matlab [27] subroutines. The analysis is conducted using the Modified Riks Method [28] and includes the 

equivalent geometric imperfections and material non-linearity (GMNIA). Modified Riks Method is chosen as 

it allows the convergence problems associated with solving non-linear systems of equations to be overcome, 

by using an iterative procedure of variation of the applied load, also known as the arc-length method, with 

the value of the load at each step given by: 

𝑃𝑇𝑜𝑡𝑎𝑙 = 𝐿𝑃𝐹 × 𝑃𝑅𝑒𝑓  

where 𝑃𝑅𝑒𝑓  is the input of the model (initial reference load) and 𝐿𝑃𝐹 is the output of the model (load 

proportionality factor also known by load parameter amplifier). Some models can present convergence 

issues, known as “back tracking”, being treated in a special manner to avoid numerical “bad results”. 

 

4.1. Plate girder geometry and material properties 

Several models were studied, as shown in Figure 4.1, to identify the model that allows to reproduce the 

structural behaviour with enough accuracy. 

A 3-panel model of Figure 4.1 c) was finally adopted. It was concluded that the best compromise between 

the simplified but accurate model is achieved by having two short panels to give the proper boundary 

conditions and some distance between the applied loads and the analysed central panel. This was also 

concluded in a recent investigation on the post-buckling mechanics in slender steel plates under pure shear 

[29]. For this numerical model, shell elements type S4R were adopted. Regarding the mesh density, recent 

studies were carried out in order to find a solution that allows an accurate simulation of the structural 

behaviour, reaching to the conclusion that for a square panel (𝛼 = 1), 30 square elements along the edges 

were sufficiently accurate with an acceptable running time of approximately one minute and a half [12]. 

Regarding the boundary conditions, studies have shown that longitudinally stiffened plates should be 

designed as simply supported along all 4 edges [12,29]. In the side panels, support and loading conditions 

were introduced, minimizing their influence in the results of the interior panel of the beam. 

To investigate the structural behaviour and identify the optimal position of the longitudinal stiffener, five 

plate-girder designs are chosen. 

  



26 

The investigated plate girder geometries consider the following parameters: 

• 
ℎ𝑤

𝑡𝑤
⁄ =  80;  𝛼 =  ℎ𝑤 𝑎⁄ = 1; 𝐴𝑓 𝐴𝑤⁄ = [0 ; 1.0] 

• ℎ𝑤 = 1000 mm; 𝑏𝑠𝑖 = 100 mm; 𝑏𝑠𝑠 = 50 mm; 

• One close stiffener with 𝛾 =  50 , and  

• placed at [0.50 ℎ𝑤; 0.60 ℎ𝑤; 0.67 ℎ𝑤; 0.75 ℎ𝑤; 0.80 ℎ𝑤] from the tension flange; or 

• without the longitudinal stiffener (in that case the ℎ𝑤  level is assumed for the stiffener). 

 

 

a) First FE model studied b) Second FE model studied 

 

c) Retained FE model 

Figure 4.1: Numerical models a), b) and c) investigated 

 

The material model used behaves elastically until it reaches the yield stress 𝑓𝑦=690 MPa, with a Young’s 

modulus equal to 210 GPa. Once the elastic properties of the material are fully utilised, a nominal hardening 

phase takes place until it reaches the ultimate resistance of the structure, 𝑓𝑢 (Figure 4.2). The properties used 

to define the material model are listed in Table 4.1, according to the prEN 1993-1-14 [30]. 
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Table 4.1: Parameters used in the material model 

E [GPa] 𝑬𝒔𝒉 [GPa] 𝒇𝒚 [MPa] 𝒇𝑪𝟏𝜺𝒖 [MPa] 𝒇𝒖 [MPa] 𝑪𝟏 

210 6.185 690 740 770 0.61 

𝜺𝒚 [%] 𝜺𝒔𝒉 [%] 𝑪𝟏𝜺𝒖 [%] 𝑪𝟐𝜺𝒖 [%] 𝜺𝒖 [%] 𝑪𝟐 

0.33 3 3.81 4.29 6.23 0.69 

 

 

Figure 4.2: Stress-strain law of the steel used in the numerical models 

 

4.2. Geometric imperfections 

The geometric imperfections play an important role in the structural strength, especially when using slender 

plate elements, due to the fact that failure is commonly governed by plate buckling. In addition to these 

imperfections, it should also be accounted the contribution of residual stresses associated to the cutting and 

welding of the different plates. In that regard, it is essential to perform the modelling of the numerical models 

considering an equivalent geometric imperfection, as given in prEN 1993-1-5 and prEN 1993-1-14 [11,31]. 

 

4.2.1. Equivalent geometric imperfections 

Two sets of equivalent geometric imperfections are analysed in order to assess which one returns the lowest 

ultimate strength. For this aim, six plate girder geometries are used, as shown in Figure 4.3. 

 

hw

1/2hw

hw

1/3hw

hw

1/4hw

hw

1/5hw

hw

2/5hw

hw

 

Figure 4.3: Geometry of the plate girders - positions of the longitudinal stiffener 
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i. Equivalent geometric imperfection 1 (IMP1) 

The first imperfection type includes: i) a global imperfection of the stiffened panel with a sine wave shape 

and an amplitude of 
ℎ𝑤

400
, coupled with ii) a local imperfection between sub-panels given by the shape of the 

first plate buckling mode with an amplitude of 
𝑏𝑖

200
.  

Researchers generally prefer to adopt the first buckling mode shape since it has usually a relevant failure 

mode that is dependent on the applied loading. 

 

ii. Equivalent geometric imperfection 2 (IMP2) 

The second imperfection type is obtained by the combination of: i) a stiffened panel global imperfection with 

a sine wave shape and an amplitude of 
ℎ𝑤

400
, coupled with ii) a local sub-panel imperfection between stiffeners, 

also defined by a sine wave shape with an amplitude of 
𝑏𝑖

200
, and considering the number of semi-waves 

equivalent to the first buckling mode, symmetrical in relation to the longitudinal stiffener (note that several 

studies have shown that a symmetrical local imperfection produced the lowest resistance [12,31]. 

For both IMP1 and IMP2, the local imperfection curves have the same sign as the global imperfection (Figure 

4.4), so that it can obtain the lowest resistance, and it is only applied in the central panel to ensure buckling 

of this panel.  

hw
a0.50a 0.50a

bi

bi /200

hw/400

 

a) panel global imperfection   b)  local sub-panel imperfection 

Figure 4.4: a) Equivalent global geometric imperfection; b) Equivalent local imperfection 

   

a) b) c) 

Figure 4.5: Geometric imperfection based on 1st buckling modes due to a) axial force; b) bending moment; c) shear force 
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4.2.2. Analysis of equivalent geometric imperfections 

As geometrical imperfections are more important for N and M buckling modes, the ultimate resistance of a 

plate girder with six different stiffener positions subjected to compression and bending moment, 

simultaneously, was obtained using the numerical analysis software Abaqus [26]. 

The results obtained for the N-M interaction for the six geometries previously described in Figure 4.3 are 

presented in Figure 4.6, where the values are normalised by the ultimate resistances obtained for panels with 

IMP1 and one stiffener located at 0.50ℎ𝑤  . 

From Figure 4.6 it can be concluded that the results match very well, which was expected given that both 

shapes are comparable. The slight differences between the results are given by the fact that in IMP1, the first 

buckling mode normally appears in one of the sub-panels whilst in IMP2, the local imperfection is always 

applied on both sub-panels as shown in Figure 4.4 b).  

Moreover, IMP2 is the one that generally gives the lowest resistances for each geometry. This occurs since 

the number of semi-waves used is based on the shape of the buckling mode, which means that the buckling 

mode always need to be assessed. Table 4.2 shows a case where the buckling mode presented 3 semi-waves 

and for IMP2, only 2 semi-waves were applied. In this case, IMP1 gives the lowest results therefore is the 

preferred one to pursue the study, as it gives the most reliable results. 

 

Figure 4.6: Results obtained from the interaction N-M regarding the two cases of equivalent geometric imperfections 
and six plate girder geometries 
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Table 4.2: Comparison of results (LPF) given by imperfections IMP 1 and IMP 2 for a longitudinal stiffener at 0.50ℎ𝑤 

𝟎. 𝟓𝟎𝒉𝒘 

Ѳ [o] 𝑵 [kN] 𝑴 [kNm] LPF (IMP1) LPF(IMP2) 

0 0.00 1634.85 1.02537 1.06046 

15 1901.92 1579.14 0.901427 0.918837 

30 3674.22 1415.82 0.820046 0.831519 

45 5196.13 1156.01 0.778723 0.793151 

60 6363.94 817.42 0.792867 0.828473 

75 7098.05 423.13 0.88827 0.935635 

90 7348.44 0.00 1.0854 1.137581 

  

a) b) 

Figure 4.7: Ultimate plate girder buckling shape for maximum LPF (Ѳ = 90o) using a) IMP1 and b) IMP2 

 

On account of IMP1, the same buckling modes were also studied but with a negative amplitude (−IMP1). 

However, this was not the worst case compared to +IMP1. 

However, modelling initial imperfections using eigenmode shapes can be quite demanding, so in this 

investigation, for pure loads the correspondent first buckling modes were used (as shown in Figure 4.8 a), b) 

and c)). 

But, for the case of a load combination, N+V or N+M, a superposition of the eigen values of two different 

modes - Figure 4.8 a) and b) - was used as in Figure 4.8 c), with the amplitudes referred previously, to deliver 

the lowest plate girder resistance. 
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a) 1st buckling mode for pure shear (V) 

 

b) 1st buckling mode for pure bending (M) 

 

c) Superposition of the 1st buckling modes a)+b) (for M+V) 

Figure 4.8: a) 1st shear-type buckling mode; b) 1st bending-type buckling mode; c) Geometric imperfection  
based on the couple of both 1st buckling modes 
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5. Parametric Study of Plate Girders with Longitudinal Stiffeners 

This chapter evaluates the ultimate resistances obtained by the numerical models of longitudinally stiffened 

plates with the six geometries described in Figure 4.3, with 
𝐴𝑓

𝐴𝑤
= 0 and 

𝐴𝑓

𝐴𝑤
= 1 . Firstly, the beams subjected 

to axial load, bending moment and shear, acting separately, will be evaluated and only then the combined 

loads N-M-V will be considered. 

5.1. Ultimate Resistances for N, M and V loadings 

The analysis is based on the numerical models developed for each geometry of longitudinally stiffened 

slender plates, subjected to individually N, M, V loadings. Figure 5.1 presents the numerical model’s 

resistances and the ones obtained using the prEN 1993-1-5 [11] formulation for each loading. 

  

a) 

 

  

b) 

 

  

c) 

 

Figure 5.1: Comparison of the resistances a) 𝑁𝑏,𝐹𝐸𝑀 𝑁𝑏,𝑅𝑘⁄ ; b) 𝑀𝑏,𝐹𝐸𝑀 𝑀𝑏,𝑅𝑘⁄ ; c) 𝑉𝑏,𝐹𝐸𝑀 𝑉𝑏,𝑅𝑘⁄   

for a longitudinally stiffened web 
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Table 5.1: Statistical study of the ratios 𝑁𝑏,𝐹𝐸𝑀 𝑁𝑏,𝑅𝑘⁄ , 𝑀𝑏,𝐹𝐸𝑀 𝑀𝑏,𝑅𝑘⁄  and 𝑉𝑏,𝐹𝐸𝑀 𝑉𝑏,𝑅𝑘⁄  for the 6 geometries 

Looking at the results obtained in the Table 5.1, it can be observed that Plate girders with longitudinal 

stiffeners in the compression part of the web have 𝑁𝑏,𝐹𝐸𝑀 𝑁𝑏,𝑅𝑘 < 1.0⁄  meaning that, for these geometries, 

the numerical ultimate resistance is inferior to the one obtained according to the standard being against the 

structural safety of the element. However, the dispersion of the obtained values is small if compared to the 

M and V loadings. 

For the relation M𝑏,𝐹𝐸𝑀 M𝑏,𝑅𝑘⁄ , it presents more conservative results but with greater dispersion, which is 

clear in the mean and standard deviation obtained, meaning that the numerical models provide resistances 

that are always much higher than those obtained according to the standard formulation. This is directly 

related to the possibility of almost total yielding of the tensioned sub-panel in the calculation of 𝑀𝑒𝑓𝑓,𝑦,𝐹𝐸𝑀, 

which is registered in the numerical calculation, something that is not allowed when obtaining 𝑀𝑒𝑓𝑓,𝑦,𝑅𝑘  using 

the standard formulation. This is all the more noticeable if the stiffener is moved up as it better protects the 

compressed panel and therefore practically does not buckle until it reaches yielding, even on the compression 

side. The greater the redistribution, as shown in Figure 5.2, the greater the difference between the results 

given by EN 1993-1-5 and ABAQUS. 

  

a) b) 

  

c) d) 
Figure 5.2: Effect of longitudinal stiffener on the evolution of compressive stresses along a stiffened metal plate 

subjected to pure bending a), b) 0.50hw  and  c), d)  0.8hw  

 avg std 𝑵º𝒄𝒂𝒔𝒆𝒔 < 𝟏. 𝟎 𝑵º𝒄𝒂𝒔𝒆𝒔 < 𝟎. 𝟗 Min Max 

𝑵𝒃,𝑭𝑬𝑴 𝑵𝒃,𝑹𝒌⁄  0.989 0.127 4 2 0.874 1.177 

𝐌𝒃,𝑭𝑬𝑴 𝐌𝒃,𝑹𝒌⁄  1.373 0.234 0 0 1.030 1.608 

𝐕𝒃,𝑭𝑬𝑴 𝐕𝒃,𝑹𝒌⁄  1.151 0.157 0 0 1.022 1.460 
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For V𝑏,𝐹𝐸𝑀 V𝑏,𝑅𝑘⁄ , the safety of the structure is always guaranteed, having good values of mean and standard 

deviation. If the stiffener is moved up, the lower sub-panel becomes increasingly slenderer, decreasing the 

resistance to shear, confirmed by the values obtained both by the standard formulation, as well as the 

numerical model. To evaluate the influence of the flanges in the ultimate resistance, plate girders with a ratio 

𝐴𝑓 𝐴𝑤⁄ = 1.0 were analysed. The ultimate resistances obtained are shown in Figure 5.3. 

  

a) 

 

  

b) 

 

  

c) 

 

Figure 5.3: Comparison of the resistances a) 𝑁𝑏,𝐹𝐸𝑀 𝑁𝑏,𝑅𝑘⁄ ; b) 𝑀𝑏,𝐹𝐸𝑀 𝑀𝑏,𝑅𝑘⁄ ; c) 𝑉𝑏,𝐹𝐸𝑀 𝑉𝑏,𝑅𝑘⁄  

 for a plate girder with 𝐴f /𝐴w = 1.0 

Table 5.2: Statistical study of the ratios 𝑁𝑏,𝐹𝐸𝑀 𝑁𝑏,𝑅𝑘⁄ , 𝑀𝑏,𝐹𝐸𝑀 𝑀𝑏,𝑅𝑘⁄  and 𝑉𝑏,𝐹𝐸𝑀 𝑉𝑏,𝑅𝑘⁄   

for the 6 geometries and 
𝐴𝑓

𝐴𝑤
= 1.0 
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 avg std 𝑵º𝒄𝒂𝒔𝒆𝒔 < 𝟏. 𝟎 𝑵º𝒄𝒂𝒔𝒆𝒔 < 𝟎. 𝟗 Min Max 

𝑵𝒃,𝑭𝑬𝑴 𝑵𝒃,𝑹𝒌⁄  1.048 0.011 0 0 1.033 1.065 

𝐌𝒃,𝑭𝑬𝑴 𝐌𝒃,𝑹𝒌⁄  1.022 0.028 1 0 0.982 1.057 

𝐕𝒃,𝑭𝑬𝑴 𝐕𝒃,𝑹𝒌⁄  0.958 0.055 5 1 0.862 1.020 
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The flanges make the plate girder behaviour much more stable and in turn there is also a huge gain in 

resistance for compression (𝑁𝑓,𝑅𝑘) and bending moment (𝑀𝑓,𝑅𝑘). 

In the presence of strong flanges, prEN 1993-1-5 [11] greatly overestimates the flange resistance to shear 

(𝑉𝑓,𝑅𝑘), as already referred by Jáger and Kövesdi [8,10]. These values are based on the calculation of the 

distance between the plastic hinges, c. Therefore, André Reis and Biscaya [12] proposed different c values 

that lead to better estimates of the shear resistances in relation to the numerical model results., shown in  

Table 5.3 and Table 5.4. 

Table 5.3: Values of 𝑐 [𝑚𝑚] based on different proposals 

𝝀𝒘 EN 1993-1-5 Reis Biscaya 

0.862 317.74 725.33 1002.27 

0.904 317.74 717.32 956.64 

0.971 317.74 704.55 892.01 

1.0387 317.74 691.64 835.17 

1.077 317.74 684.34 806.18 

 

Table 5.4: Values of 𝑉𝑏𝑓,𝑅𝑑  [𝑘𝑁] based on different proposals 

𝝀𝒘 EN 1993-1-5 Reis Biscaya 

0.862 1149.21 503.42 364.32 

0.904 1149.21 509.04 381.70 

0.971 1149.21 518.27 409.35 

1.0387 1149.21 527.94 437.21 

1.077 1149.21 533.57 452.93 

 

 

Figure 5.4: Resistance to shear as a function of the web slenderness 
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Analysing Figure 5.4, for the new proposals of Reis and Biscaya [12], there is a practically horizontal line in 

the beginning meaning that the plastic resistance governs and as we raise the stiffener, we increase the 

slenderness of the sub-panel and, consequently, lower the contribution of the flange to the resistance to 

shear, whilst the Eurocode is not influenced the slenderness of the web. The formulation based on the 

prEN 1993-1-5 [11] overestimates the value of 𝑉𝑏𝑓, as said before, consequently overestimating the total 

shear resistance. On the other hand, the other two proposals are better adjusted. 

 

5.2. Ultimate Resistances for Combined Loads  

First, it is important to explain how the differences between the numerical strengths and those obtained in 

prEN 1993-1-5 [11] are evaluated, when the N-M-V forces are applied simultaneously. For this, a spherical 

coordinate system is used, as shown in Figure 5.6: Spherical coordinate system, and the coordinates are 

obtained as follows: 

▪ 
𝑁𝐹𝐸𝑀

𝑁𝑅𝑘
= 𝐿𝑃𝐹 × cos 𝜃1 × cos 𝜃2 

(5.1) ▪ 
𝑀𝐹𝐸𝑀

𝑀𝑅𝑘
= 𝐿𝑃𝐹 × sen 𝜃1 × cos 𝜃2 

▪ 
𝑉𝐹𝐸𝑀

𝑉𝑅𝑘
= 𝐿𝑃𝐹 × sen 𝜃2  

 

 

 

 

 

 

 

 

For this study, seven values of angles were adopted [0o, 15o, 30o, 45o, 60o, 75o, 90o], thus obtaining 7x7 points 

of the N-M-V interaction surface for each geometry considered. The norm 𝑅 of a point on this surface with 

acting forces (𝑁𝐸𝑑, 𝑀𝐸𝑑, 𝑉𝐸𝑑), is given by 

𝑅 = √(
𝑁𝐸𝑑

𝑁𝑒𝑓𝑓,𝑅𝑑
)

2

+ (
𝑀𝐸𝑑

𝑀𝑒𝑓𝑓,𝑅𝑑

)

2

+ (
𝑉𝐸𝑑
𝑉𝑏𝑤,𝑅𝑑

)

2

 (5.2) 

where (𝑁𝑒𝑓𝑓.𝑅𝑑, 𝑀𝑒𝑓𝑓.𝑅𝑑, 𝑉𝑏𝑤.𝑅𝑑) correspond to the ultimate resistances obtained by Biscaya (being that 

previously it was concluded that the proposed formulas were better adjusted to the study), considering a 

partial safety factor of 𝛾𝑀1 = 1,0 (Figure 5.5). For each of the 6 geometries adopted, 2 ratios of 𝐴𝑓 𝐴𝑤⁄  are 

R 

𝑁𝐸𝑑 𝑁𝑒𝑓𝑓,𝑅𝑑⁄  

Figure 5.6: Spherical coordinate system Figure 5.5: 49 points obtained by the numerical model for the  
N-M-V interaction for a given geometry 

𝑀𝐸𝑑 𝑀𝑒𝑓𝑓,𝑅𝑑⁄  

𝑉 𝐸
𝑑
𝑉 𝑏
𝑤
,𝑅
𝑑

⁄
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considered (𝐴𝑓 𝐴𝑤⁄ = 0 and 𝐴𝑓 𝐴𝑤⁄ = 1) and 49 relations between N-M-V loads, corresponding to a total of 

6 × 2 × 49 = 588 finite element models. 

5.2.1. N-M and M-V interactions 

Figure 5.7 to Figure 5.12 show the tendency of the N-M and M-V interactions, for the different positions of 

the stiffeners, with and without flanges (𝐴𝑓 𝐴𝑤⁄ = 0 and 𝐴𝑓 𝐴𝑤⁄ = 1). The graphs are normalised for the 

case where we have the stiffener located at 0.50ℎ𝑤 for a better understanding of the gain or loss of resistance 

when we change its position. 

  

Figure 5.7: M-V interaction for 𝐴𝑓 𝐴𝑤⁄ = 0 

 

Figure 5.8: N-M interaction for 𝐴𝑓 𝐴𝑤⁄ = 0 
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For the M-V interaction (Figure 5.7) it can be observed that there is an interest in raising the stiffener 

upwards, because for a higher shear load there is a gain in resistance when we pull the stiffener up to let the 

bottom sub-panel resist to shear and the top sub-panel to the bending moment, protecting the compressed 

part of the web more. This happens mainly for 
𝑉𝑓𝑒𝑚

𝑉𝑓𝑒𝑚(0.5ℎ𝑤)
< 0.80. 

Regarding the N-M interaction (Figure 5.8) there is an interaction zone where a change in behaviour can be 

observed (
𝑁𝑓𝑒𝑚

𝑁𝑓𝑒𝑚(0.5ℎ𝑤)
< 0.70). For a better understanding of this behaviour, the following graphics were 

made where it is possible to observe the buckling mode of the panels for the various load cases. 

In the case where we do not have the stiffener in the middle, Figure 5.10, there is a change in the buckling 

mode when the axial load is increased, and the bending moment is decreased. We now have the buckling of 

the lower sub-panel since the bending moment gives a compression on the top sub-panel and with the 

stiffener higher up it protects it because there is a greater amount of working area resisting to the introduced 

compression. In the case of stiffener positioned in mid span, Figure 5.9, there is no effect of gain in resistance, 

but in the case of having only axial load, it turns out to be the best situation, thus there is buckling in the two 

sub-panels. 

When adding the flanges, the model becomes much more predictable. The flanges resist to the compression 

and therefore we do not have this favourable effect as in the previous case, thus having a much better-

behaved graphic. Therefore, the position of the stiffener ends up not having as much relevance in this 

situation. 

For the M-V interaction (Figure 5.12), there is practically no interaction between the bending moment and 

shear, which is basically the Eurocode formulation that was retained. 

In conclusion, using the stiffener in the middle turns out to be the compromise, working well for positive and 

negative moments and in case where we have N and V acting separately, it is always the best option. The 

other positions must be optimized depending on the load. In the situation without flanges, it would be 

interesting to raise the stiffener because there is a huge gain in terms of resistance, as said before, however 

this result turns out to be misleading because beams normally have flanges, and for plate-girders with strong 

flanges, 𝐴𝑓 𝐴𝑤⁄ = 1.0, the stiffener position becomes irrelevant. 
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Figure 5.9: N-M interaction for 𝐴𝑓 𝐴𝑤⁄ = 0, stiffener position 0.50hw 

 

 

 

Figure 5.10: N-M interaction for 𝐴𝑓 𝐴𝑤⁄ = 0, stiffener position 0.60hw 
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Figure 5.11: N-M interaction for 𝐴𝑓 𝐴𝑤⁄ = 1.0 

 

 

 

Figure 5.12: M-V interaction for 𝐴𝑓 𝐴𝑤⁄ = 1.0 
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5.2.1. N-M-V interaction 

Finally, Table 5.5 summarises the results of the 588 numerical models analysed, where the values are 

normalised to the effective axial load 𝑁𝑒𝑓𝑓 , in the case of axial load, to the effective bending moment  

(y direction) 𝑀𝑒𝑓𝑓,𝑦, for the bending moment, and to the design resistance to shear 𝑉𝑏,𝑅𝑑, for the case of 

shear, and logically, these values vary with the geometry of the cross section. 

Table 5.5: Statistical study of the N-M-V interaction resistances following Biscaya´s proposal 

𝑹𝑭𝑬𝑴
𝑹𝑷𝑹𝑶𝑷
⁄  

𝑨𝒇 𝑨𝒘⁄ = 𝟎 

avg std 𝑵º𝒄𝒂𝒔𝒆𝒔 < 𝟏. 𝟎 𝑵º𝒄𝒂𝒔𝒆𝒔 < 𝟎. 𝟗 Min Max 

𝟎. 𝟓𝟎𝒉𝒘 1.093 0.065 1 0 0.954 1.261 

𝟎. 𝟔𝟎𝒉𝒘 1.247 0.164 5 0 0.974 1.563 

𝟎. 𝟔𝟕𝒉𝒘 1.360 0.249 5 0 0.905 1.829 

𝟎. 𝟕𝟓𝒉𝒘 1.445 0.304 3 2 0.878 2.036 

𝟎. 𝟖𝟎𝒉𝒘 1.452 0.312 3 1 0.874 2.050 

𝒉𝒘 1.280 0.154 0 0 1.000 1.547 

𝑹𝑭𝑬𝑴
𝑹𝑷𝑹𝑶𝑷
⁄  

𝑨𝒇 𝑨𝒘⁄ = 𝟏. 𝟎 

avg std 𝑵º𝒄𝒂𝒔𝒆𝒔 < 𝟏. 𝟎 𝑵º𝒄𝒂𝒔𝒆𝒔 < 𝟎. 𝟗 Min Max 

𝟎. 𝟓𝟎𝒉𝒘 1.040 0.045 16 0 0.968 1.121 

𝟎. 𝟔𝟎𝒉𝒘 1.055 0.059 12 0 0.980 1.158 

𝟎. 𝟔𝟕𝒉𝒘 1.089 0.055 0 0 1.020 1.218 

𝟎. 𝟕𝟓𝒉𝒘 1.113 0.051 0 0 1.047 1.244 

𝟎. 𝟖𝟎𝒉𝒘 1.110 0.047 1 0 0.993 1.229 

𝒉𝒘 1.227 0.125 1 0 0.993 1.388 

 

For 𝐴𝑓 𝐴𝑤⁄ = 0, the geometry that obtained the best results was the one with the mid-span stiffener, which 

was expected since the bases of this formulation (N, M and V applied separately) tend to become more 

conservative as we raise the stiffener up, concluded in Section 5.1.  

As the stiffeners are moved up along the web compressive part, it becomes more conservative (increase in 

the mean) and there is also an increase in the dispersion of results (higher standard deviation). Only three 

points are outside the safety zone, that is, below the 10% margin that is somehow considered in the reduction 

of resistance when using the partial safety factor of 𝛾𝑀1 = 1,10 (
𝑅𝐹𝐸𝑀

𝑅𝑃𝑅𝑂𝑃
⁄ < 0.9), thus giving a good 

calibration of resistances by Biscaya´s proposal. 

When adding the flanges, which in this case are considered strong flanges, the average in general is much 

closer to the unit, obtaining less conservative results but always on the safety side (although it becomes more 

conservative as we rise up the stiffener) and there is also a decrease in the standard deviation as the flanges 

make the model much more stable. 
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In Figure 5.13, the final graphics associated with the results shown in Table 5.5 are presented, showing the 

behaviour observed for the two different ratios of 𝐴𝑓 𝐴𝑤⁄  for the proposal of Biscaya regarding the N-M-V 

interaction. 

 

  

  

  
𝑅𝐹𝐸𝑀
𝑅𝑃𝑅𝑂𝑃

(
𝐴𝑓

𝐴𝑤
= 0) 
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𝑅𝐹𝐸𝑀
𝑅𝑃𝑅𝑂𝑃

(
𝐴𝑓

𝐴𝑤
= 1.0) 

Figure 5.13 : 𝑅𝐹𝐸𝑀 𝑅𝑃𝑅𝑂𝑃⁄  for plate girders with six longitudinal stiffener positions and 
𝐴𝑓

𝐴𝑤
= 0 𝑜𝑟 1.0 

 

In addition, Figure 5.14 present some N-M-V interaction surfaces according to Biscaya´s interaction proposal 

so that it is possible to evaluate the relevance of the position of the stiffener.  
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0.50ℎ𝑤 // 

𝐴𝑓

𝐴𝑤
= 0 0.50ℎ𝑤 // 

𝐴𝑓

𝐴𝑤
= 1 

  
0.60ℎ𝑤 // 

𝐴𝑓

𝐴𝑤
= 0 

 

0.60ℎ𝑤 // 
𝐴𝑓

𝐴𝑤
= 1.0 

 
0.67ℎ𝑤 // 

𝐴𝑓

𝐴𝑤
= 0 0.67ℎ𝑤 // 

𝐴𝑓

𝐴𝑤
= 1.0 
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0.75ℎ𝑤 // 

𝐴𝑓

𝐴𝑤
= 0 0.75ℎ𝑤 // 

𝐴𝑓

𝐴𝑤
= 1.0 

  
0.80ℎ𝑤 // 

𝐴𝑓

𝐴𝑤
= 0 0.80ℎ𝑤 // 

𝐴𝑓

𝐴𝑤
= 1.0 

Figure 5.14: 𝑅𝐹𝐸𝑀 𝑅𝑃𝑅𝑂𝑃⁄  for plate girders with a longitudinal stiffener 

 

5.3. Post maximum load behaviour 

It is also of interest to evaluate the behaviour of the plate girder after reaching its maximum capacity. That 

depends on the type of loading and failure mode, as well as, on the plate girder slenderness and its capacity 

to redistribute the stresses after reaching the maximum load capacity. 

To evaluate the post maximum load capacity of the plate girder, the arc-length parameter used in the GMNIA 

analysis is assumed to be a good parameter to have an overall view of the plate girder behaviour during the 

process of loading. It should be noted that the same plots were put together using the axial displacement of 

the web for the axial load, and overall rotation of the loaded sections for the case of applying a bending 

moment. It was concluded that these plots present the same layout, differing only in the units used in the 

horizontal axis. It was decided that the arch-length parameter was a good form of evaluating the global 

behaviour of the plate girder for very high load-levels, and after the maximum load capacity. 

Therefore, for the N, M and V loadings, applied separately in the plate girder, the load parameter LPF is 

plotted as a function of the the Arch-length parameter. These plots are presented in Figures 5.15 (for N 
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loadings); 5.16 (for M loadings) and 5.17 (for V loadings) and considering the stiffened web without flanges 

𝐴𝑓

𝐴𝑤
= 0 (dash lines) and with strong flanges 

𝐴𝑓

𝐴𝑤
= 1 (solid lines). These figures also present the buckling modes 

reported in each loading type for the case where the longitudinal stiffener is placed at 0.50ℎ𝑤, at 0.80ℎ𝑤 , 

or in the case no stiffener is used.  

 

Figure 5.15: LPF/arc-length plot when plate-girder subjected to pure compression 

When the plate-girder is subjected to the axial load, and no flanges are adopted, the maximum resistance is 

much lower than when strong flanges are adopted. The increase of resistance when the flanges are added is 

even higher than the factor of 3 of the increased area, due to the fact that the flanges do not buckle at the 

same time of the web. In all cases a local plate buckling mode was reported, as can be seen in Figure 5.15. 
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This fact explains why after reaching the maximum plate girder capacity, very high loads can still be 

equilibrated with increasing deformations. This behaviour is more noticeable if the longitudinal stiffener is 

placed at mid-height of the web, dividing the web into two sub-panels with the same buckling behaviour to 

the pure compression loading. The worst-case scenario is if no stiffener is used. In that case, the maximum 

capacity is lower and the web cannot maintain the load capacity so well after reaching the maximum 

resistance. 

For the case of a bending moment (Figure 5.16), a single stiffened web has a much lower bending resistance 

than the plate girder with strong flanges, as it would be expected. 

 

Figure 5.16: LPF/arc-length plot when plate-girder subjected to pure bending 
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When the flange is added, the load capacity of the plate girder is much reduced after reaching the maximum 

resistance. This is due to the fact that the buckling mode of the plate girder also involves the buckling of the 

top compressed flange into the web, usually known as flange induced buckling. However, if the longitudinal 

stiffener is near the top compressed flange, like at 0.80ℎ𝑤, the web is prevented from buckling, and the 

bending capacity is preserved. In this situation, the failure mode also involves the buckling of the longitudinal 

stiffener placed in the compressed part of the web. If no flanges are used, the resistant capacity is kept almost 

constant after reaching the maximum, since no buckling occurs in the top sub-plate until reaching the 

complete yielding of the cross-section, except for the case where there is no stiffener. 

Finally, for the case of plate girders subjected to shear forces, as presented in Figure 5.17 a local plate buckling 

mode was reported in all cases. 

 

Figure 5.17: LPF/arc-length plot when plate-girder subjected to pure shear 
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First, it is interesting to notice that the gains of using a longitudinal stiffener are significant, dividing the web 

into two sub-panels, but the difference of adding flanges is not so pronounced. In all cases the buckling mode 

that leads to failure is a typical shear plate buckling mode. And, since the longitudinal stiffener is very stiff, it 

perfectly divides the web into two sub-panels, sometimes even with two buckling semi-waves. 

The second interesting aspect is that the maximum shear resistance is higher if the stiffener is placed at mid-

height of the web. Some reduction of this maximum shear resistance is noticeable if the stiffener is moved 

up or suppressed. 

The third aspect that should be noticed is the fact that without flanges the stiffened plate loses significant 

shear capacity after reaching the maximum load. That is more visible for slender sub-panels obtained when 

the stiffener is moved up on the web. More significant than that is that when adding the flanges, although 

the maximum plate girder shear capacity is not much increased, it remains practically unchanged with 

increase deformations, due to the fact that the edges of the buckle web can be remained supported by the 

flanges when they are submitted to higher distortions.  

Even for the case of a longitudinal stiffener placed at mid-height of the web, the maximum shear capacity is 

reached for very high distortions, and much after the web has buckled. It seems as a second failure mechanics 

of a frame composed by the flanges and the vertical transverse stiffeners reaches yielding in a second 

moment with very high distortions, and that compensates the loss of shear resistance of the web. This plate 

girder behaviour loaded to shear was very recently reported in ref. [29]. 
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6. Application of the Reduced Stress Method with Stress Shedding 

As an option, pr EN 1993-1-5 allows the design of plated girder structures using the Reduced Stress Method 

as introduced in 3.4. When applying this method, the plate critical stresses need to be obtained for the 

complete stress field applied to the stiffened plate. For complex stress fields, this task was not so 

straightforward to do with analytical solutions, and numerical approximated solutions were often adopted. 

The software EBPlate (EBP) was a step forward to support this task [25]. 

 

6.1. Plate Girder Geometry and Critical Stresses using EBPlate 

The geometry of the stiffened plate is first introduced in the software, as well as the elasticity modulus and 

Poisson´s coefficient, 𝐸 = 210 𝐺𝑃𝑎 and 𝜈 = 0.30, respectfully (Figure 6.1). After that, the longitudinal 

stiffener with its respective characteristics is introduced, as shown in Figure 6.2. 

  

Figure 6.1: Geometry of the stiffened plate introduced in EBP 

  

Figure 6.2: Properties of the longitudinal stiffener introduced in EBP 
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To determine the critical stresses for the axial force, bending moment and shear loadings, for each of the 

plate girder geometries, it is necessary to consider the two types of plate failure mode, global and local, 

modes (Figure 6.3 a) and b)), and consider the governing buckling mode. In order to avoid local buckling of 

the plate and stiffened sub-panels (equivalent to the global buckling), the stiffened plate is modelled as an 

orthotropic plate. Thus, the option “Orthotropic plate” must be activated and the coefficient 𝜂𝑥 is equalled 

to –1, preventing the local plate modes. 

Having these values of the critical stresses regarding both buckling modes, the lowest value is then used to 

determine the plate girder ultimate resistance for a specific loading that can considers the axial force, 

bending moment and shear force applied together or separately. 

  

a) b) 

Figure 6.3: Buckling modes a) global and b) local of a stiffened plate-girder subjected to an axial force using EBP 

 

6.2. Ultimate Resistances for N, M and V loadings 

The analysis is based on the comparison of both calculation methods (RSM and EWM), when plate girders 

are loaded with N, M, V loadings, applied separately, as shown in Figure 6.4. For a simple stiffened plate 

(without flanges), the main conclusions from these results are: 

1) Conclusions on the 𝐍𝐑𝐒𝐌 𝐍𝐄𝐖𝐌⁄  analysis: 

• In the EWM, the effective widths for the compressed web panels produce a certain stress 

redistribution to the web part under tension and to the compressed flange; for relatively narrow 

compressed sub-panels this stress redistribution is small.  

• However, the larger the sub-panels are (if the stiffener is moved up in the web), the greater the 

stress redistribution reported using the EWM, which corresponds to having a more noticeable 

plastic redistribution of stresses, thus moving away from the elastic behaviour as it is assumed when 

using the RSM and justifying a higher ultimate resistance to an axial compressed force. 
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• For the RSM points, there is a linear variation when shifting the stiffener up caused by the reduction 

of the local critical load, due to the fact that the most slender of the two sub-panels will govern the 

plate girder resistance.  

   a) 

b) 

c) 

Figure 6.4: : Comparison of the resistances a) 𝑁𝑅𝑆𝑀 𝑁𝐸𝑊𝑀⁄ ; b) 𝑀𝑅𝑆𝑀 𝑀𝐸𝑊𝑀⁄ ; c) 𝑉𝑅𝑆𝑀 𝑉𝐸𝑊𝑀⁄   
for a plate girder  with 𝐴f /𝐴w = 0 

2) Conclusions on the 𝐌𝐑𝐒𝐌 𝐌𝐄𝐖𝐌⁄  analysis: 

• For the present plate girder, the bending resistances are the same irrespective of the method used; 

This occurs due to the fact that, when a bending moment is applied, there is no web local buckling 

up to reaching the yielding of the flange. 
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• Hence even for the EWM there is no possible redistribution of stresses (the elastic stress distribution 

is maintained) and the ultimate resistance corresponds to the yielding bending moment for both 

methods. 

3) Conclusions on the 𝐕𝐑𝐒𝐌 𝐕𝐄𝐖𝐌⁄  analysis: 

• The shear resistance given by the RSM is always higher than that of the EWM because the critical 

stresses obtained using the EBP are higher than the ones obtained by the approximate formulations 

given in the Annex A3 of prEN 1993-1-5 [11], as shown in Figure 6.5. 

 

Figure 6.5: Comparison of critical stresses obtained by prEN 1993-1-5 and EBP 

 

To evaluate the influence of the flanges in the ultimate resistance of the stiffened plate girder when using 

the RSM, plate girders with a ratio 𝐴𝑓 𝐴𝑤⁄ = 1.0 were analysed. The ultimate resistances obtained are shown 

in Figure 6.6.  

As previously mentioned, the RSM neglects the contribution of the flanges to the resistance, therefore, as it 

was expected, the resistances obtained for the axial force obtained by the EWM are always higher when 

adding the flanges to the plate girder cross-section.  

For the bending resistance, as explained previously, there is no web local buckling up to reaching the yielding 

of the flange. Hence even for the EWM there is no possible redistribution of stresses (the elastic stress 

distribution is maintained) and the ultimate resistance corresponds to the yielding bending moment for both 

methods. 

For the case of the plate-girder loaded by the shear force, there are no differences on the resistances 

obtained by the RSM whether in the presence of flanges or not, because the resisting area, 𝐴𝑤, is kept 

constant. Again, this happens due to the fact that the RSM does not consider the shear resistance 

contribution of the flanges. 
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   a) 

   b) 

   c) 

Figure 6.6: Comparison of the resistances a) 𝑁𝑅𝑆𝑀 𝑁𝐸𝑊𝑀⁄ ; b) 𝑀𝑅𝑆𝑀 𝑀𝐸𝑊𝑀⁄ ; c) 𝑉𝑅𝑆𝑀 𝑉𝐸𝑊𝑀⁄   
for a plate girder with 𝐴f /𝐴w = 1.0 
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6.3. Formulation of the Reduced Stress Method with Stress Shedding – RSM + S 

To allow stress shedding in the RSM, Biscaya [12] proposed a formulation for the RSM based on the approach 

from the old BS 5400 – Part 3 - Code of practice for the design of steel bridges. The applied internal forces 

can be written as a function of the factor 𝑘 , which represents the fraction of the direct stress that remains 

in the web: 

 

Considering the RSM, the load amplifiers can be rewritten as function of the 𝑘 factor and 𝑐𝜃,𝑁 , 𝑐𝜃,𝑀 , and 𝑐𝜃,𝑉 

factors, as follows: 

 

To better understand these equations, an example is presented in Figure 6.7. 
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σf1,M Δ σf1,M
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+

+ +

+
kσw1,M

 

Figure 6.7: Example of RSM+S applied on a plate girder cross-section 

𝑁𝐸𝑑 = 𝛼 [𝐴𝑤𝑘 + (2𝐴𝑓 + (1 − 𝑘)𝐴𝑤)]𝑐𝜃,𝑁 (6.1) 

𝑀𝐸𝑑 = 𝛼 [
𝐴𝑤ℎ𝑤
6

𝑘 + (𝐴𝑓ℎ𝑤 + (1 − 𝑘)
𝐴𝑤ℎ𝑤
6

)]𝑐𝜃,𝑀 (6.2) 

𝑉𝐸𝑑 = 𝛼 𝐴𝑤𝑐𝜃,𝑉 (6.3) 

𝛼𝑢𝑙𝑡,𝑘 = 𝑓𝑦√
1

3(𝑐𝜃,𝑉)
2 + (𝑘𝑐𝜃,𝑁 + 𝑘𝑐𝜃,𝑀)

2
 (6.4) 

𝛼𝑐𝑟 =

√4((
𝑐𝜃,𝑉
𝜏𝑐𝑟,𝑉

)
2

+ (𝑘
𝑐𝜃,𝑀
𝜎𝑐𝑟,𝑀

)
2

) + (𝑘
𝑐𝜃,𝑁
𝜎𝑐𝑟,𝑁

)
2

− (𝑘
𝑐𝜃,𝑁
𝜎𝑐𝑟,𝑁

)

2 ((
𝑐𝜃,𝑉
𝜏𝑐𝑟,𝑉

)
2

+ (𝑘
𝑐𝜃,𝑀
𝜎𝑐𝑟,𝑀

)
2

)

 (6.5) 

𝛼𝑟𝑘 = 𝑓𝑦√
1

3(
𝑐𝜃,𝑉
𝜒𝑤

)2 + (𝑘
𝑐𝜃,𝑁+𝑐𝜃,𝑀

𝜌
)2

 (6.6) 
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Because the flanges have a maximum capacity due to yielding (𝐹𝑓 = 𝐹𝑓,𝑠𝑢𝑝,𝑁 + 𝐹𝑓,𝑠𝑢𝑝,𝑀 ≤ 𝐴𝑓𝑓𝑦), 𝛼 is a 

function of the stress distribution, as well as the ratio of flange to web gross section. When a stiffener is 

added, Figure 6.8 shows the shedding portion of the bending moment. 

(1-k)σw,M

h1

h2

2/3h1

2/3h2

Fw1

Fw2

Fs

hs

(1-k)σw,Mh2/h1  

Figure 6.8: Shedding portion of bending moment 

 

Moreover, to be in equilibrium, the forces of the flanges must produce the same bending moment: 

   

where each stress is given by: 

 

(6.7) 

  

• 𝜎𝑓,𝑁 = 𝛼𝑅𝑘 ∙ 𝑐𝜃,𝑁  ,   𝜎𝑓,𝑀 = 𝛼𝑅𝑘 ∙ 𝑐𝜃,𝑀 

• 𝜎𝑤,𝑁 = 𝛼𝑅𝑘 ∙ 𝑐𝜃,𝑁  ,  𝜎𝑤,𝑀 = 𝛼𝑅𝑘 ∙ 𝑐𝜃,𝑀  

• 𝛥𝜎𝑓,𝑁 = (1 − 𝑘)𝜎𝑤,𝑁 ∙
𝐴𝑤

2𝐴𝑓
 

• 𝛥𝜎𝑓,𝑀 = (1 − 𝑘)𝜎𝑤,𝑀 ∙
𝑊𝑤

ℎ𝑤
∙
1

𝐴𝑓
 

• 𝜎𝑓,𝑁 + 𝛥𝜎𝑓,𝑁 + 𝜎𝑤,𝑁 + 𝛥𝜎𝑓,𝑀 ≤ 𝑓𝑦 → 𝑘𝑚𝑖𝑛 

which, it terms of the internal forces required to assure the equilibrium of the cross-section, are given by 

• 𝛥𝑀𝑤 = 𝐹𝑤1 ∙
2

3
ℎ1 + 𝐹𝑤2 ∙

2

3
ℎ2 + 𝐹𝑠 ∙ ℎ𝑠 

(6.8) 
• 𝐹𝑤1 = (1 − 𝑘)𝜎𝑤,𝑀 ∙

ℎ1

2
∙ 𝑡𝑤 

• 𝐹𝑤2 = (1 − 𝑘)𝜎𝑤,𝑀 ∙
ℎ2

ℎ1
∙
ℎ2

2
∙ 𝑡𝑤 

• 𝐹𝑠 = (1 − 𝑘)𝜎𝑤,𝑀 ∙
ℎ𝑠

ℎ1
∙ ℎ𝑠 ∙ 𝐴𝑆 

• 𝛥𝑀𝑤 = 𝛥𝐹𝑓,𝑠𝑢𝑝 ∙ ℎ1 + 𝛥𝐹𝑓,𝑖𝑛𝑓 ∙ ℎ2 

(6.9) 
• 𝛥𝐹𝑓,𝑖𝑛𝑓 = 𝛥𝐹𝑓,𝑠𝑢𝑝 ∙

ℎ2

ℎ1
 

• 𝛥𝑀𝑤 = 𝛥𝐹𝑓,𝑠𝑢𝑝 ∙ ℎ1 + 𝛥𝐹𝑓,𝑠𝑢𝑝 ∙
ℎ2

ℎ1
∙ ℎ2 → 𝛥𝐹𝑓,𝑠𝑢𝑝 = 𝛥𝑀𝑤/(ℎ1 +

ℎ2

ℎ1
∙ ℎ2) 

• 𝛥𝜎𝑓,𝑀 = 𝛥𝐹𝑓,𝑠𝑢𝑝/𝐴𝑓 
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6.4. N-M-V interaction using the RSM 

The N-M-V interaction resistance for different load cases can be evaluated using both proposals according to 

the prEN 1993-1-5 [11] (RSM and EWM) and the numerical models previously presented. Figure 6.9 presents 

the ratios 𝑅𝑅𝑆𝑀 𝑅𝐹𝐸𝑀⁄  for plate girders with five longitudinal stiffener positions and 𝐴𝑓/𝐴𝑤 = 0 or 1.0. Both 

resistances obtained from the EWM (in green) and RSM without stress shedding (in orange). Figure 6.10 

compares the RSM resistance surface (in blue) with the FEM resistances (points in orange). As these results 

are not very easy to compare, Table 6.1 gives the statistical evaluation of the resistances of the interaction 

of N-M-V loads according to the RSM.  

According with these results the following main conclusions can be drawn for the N-M-V interaction: 

𝐴𝑓 𝐴𝑤⁄ = 0 – Stiffened plate girders without flanges 

• Although the differences are not higher than 10%, the RSM provides resistances greater than those 

obtained by the numerical models for several cases, namely when N and V have high values (see 

Figure 6.9 for 𝐴𝑓/𝐴𝑤 = 0), this is due to the fact that a quadratic iteration between the N+M normal 

stresses and V shear stresses is always adopted, whereas the shape of the N-V interaction graphic 

has not always an exact quadratic shape. 

• The RSM has a quadratic shape (see Figure 6.10 for 𝐴𝑓/𝐴𝑤 = 0) because the bases come from a von 

Mises formula while the N-V interaction proposed for the EWM does not (see Figure 5.14 for 

𝐴𝑓/𝐴𝑤 = 0), especially for slenderer plates, which is the case; thus, a bigger difference between the 

two results is observed, with the RSM providing resistances that are not on the safety side. 

• In fact, it can be seen in Figure 6.10 that in the N-V plane the RSM resistances are overestimated 

compared to the numerical model results; on the contrary, the actual resistance shape along the 

plane M-V for the two methods is approximately an ellipse thus both methods match with the 

numerical resistances much better. 

• The RSM provides overall higher resistances than the EWM for the cases without flanges because it 

applies the concept of a global slenderness of the web, as well as, a reduction factor based on the 

von Mises formula; this can be concluded by the lower ratio 𝑅𝐹𝐸𝑀/𝑅𝑅𝑆𝑀 averages obtained in Table 

6.1 if compared with the ratios 𝑅𝐹𝐸𝑀/𝑅𝐸𝑊𝑀 averages from Table 5.5 for the EWM. 

𝐴𝑓 𝐴𝑤⁄ = 1.0 – Stiffened plate girders with strong flanges 

• When adding flanges to the cross-section, the resistances obtained by the RSM have a much better 

match with the numerical results (see Figure 6.9 for 𝐴𝑓/𝐴𝑤 = 1); this can also be concluded by Table 

6.1 ratio 𝑅𝐹𝐸𝑀/𝑅𝑅𝑆𝑀 averages (below 1.2) and dispersions (below 0.15). 

• Because the RSM neglects the stress shedding of the normal stresses from the web to the strong 

flanges, the normal force design resistances are very much on the conservative side, as can be clearly 

concluded from the resistance surfaces provided in Figure 6.10 for 𝐴𝑓/𝐴𝑤 = 1). 
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𝑅𝐹𝐸𝑀/𝑅𝑃𝑅𝑂𝑃  (𝐴𝑓/𝐴𝑤 = 1.0) 

Figure 6.9: 𝑅𝑅𝑆𝑀 𝑅𝐹𝐸𝑀⁄  for plate girders with five  longitudinal stiffener positions and 𝐴𝑓/𝐴𝑤 = 0 𝑜𝑟 1.0 

 

Table 6.1: Statistical study of the N-M-V interaction resistances according to the RSM 

𝑹𝑭𝑬𝑴
𝑹𝑹𝑺𝑴
⁄  

𝑨𝒇 𝑨𝒘⁄ = 𝟎 

avg std 𝑵º𝒄𝒂𝒔𝒆𝒔 < 𝟏. 𝟎 𝑵º𝒄𝒂𝒔𝒆𝒔 < 𝟎. 𝟗 Min Max 

𝟎. 𝟓𝟎𝒉𝒘 0.996 0.074 34 0 0.904 1.215 

𝟎. 𝟔𝟎𝒉𝒘 1.108 0.142 14 0 0.909 1.472 

𝟎. 𝟔𝟕𝒉𝒘 1.188 0.221 16 0 0.853 1.698 

𝟎. 𝟕𝟓𝒉𝒘 1.256 0.266 13 0 0.848 1.837 

𝟎. 𝟖𝟎𝒉𝒘 1.269 0.256 13 0 0.917 1.824 

𝑹𝑭𝑬𝑴
𝑹𝑹𝑺𝑴
⁄  

𝑨𝒇 𝑨𝒘⁄ = 𝟏. 𝟎 

avg std 𝑵º𝒄𝒂𝒔𝒆𝒔 < 𝟏. 𝟎 𝑵º𝒄𝒂𝒔𝒆𝒔 < 𝟎. 𝟗 Min Max 

𝟎. 𝟓𝟎𝒉𝒘 1.078 0.064 10 0 0.968 1.258 

𝟎. 𝟔𝟎𝒉𝒘 1.098 0.105 10 0 0.971 1.377 

𝟎. 𝟔𝟕𝒉𝒘 1.123 0.130 10 0 0.977 1.491 

𝟎. 𝟕𝟓𝒉𝒘 1.169 0.141 0 0 1.022 1.587 

𝟎. 𝟖𝟎𝒉𝒘 1.191 0.138 0 0 1.047 1.571 

0.67ℎ𝑤 0.75ℎ𝑤 

0.80ℎ𝑤 
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Figure 6.10: N-M-V interaction surface from the RSM and FEM resistance points 

 

6.4.1. RSM+S for N and M loadings 

After evaluating the ultimate resistance of the plate-girders when subjected to compression, bending 

moment and shear using the RSM as proposed in the prEN 1993-1-5 [11], it is intended to use the RSM+S to 

assess what can be improved when compared with the numerical resistances.  

As mentioned before, for the plate-girders under study, when a bending moment is applied, the resistance 

is equal to the yielding bending moment, so no stress shedding can be done from the web to the flanges; 

thus, no improvement can be archived for this case.  

But, for pure compression, the ultimate resistances obtained with the possibility of shedding tend to be much 

more similar to the ones obtained by the numerical models, as well as those of the EWM (Figure 6.11).  

  

Figure 6.11: Comparison of the pure compression resistance to between the 3 methods (RSM, RSM+S and EWM)  
and the FEM results 
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Therefore, the RSM with stress shedding gives much better results than when neglecting the flanges 

contribution. As the stiffener is shifted up, the coefficient 𝑘 applied to the normal stresses that remain in the 

web tends to become smaller (Figure 6.12), indicating that there is a greater possibility of redistribution even 

if most of the normal stresses remain in the web (between 0.65 and 0.85). To get to lower values of 𝑘, flanges 

with more area were required. 

 

Figure 6.12: Values of k for the different stiffener positions 

 
6.4.2. RSM+S for N-M interaction 

Finally, the influence of shedding on the N-M interaction is analysed for the plate girder with the stiffener at 

mid height of the section (0.50ℎ𝑤) and flanges with 𝐴𝑓/𝐴𝑤 = 1.0. Figure 6.3 presents the comparison 

between the N-M interaction for the different load cases (with 𝜃1 = [0, 15, 30, 45, 60,75, 90] and 𝜃2 = 0).  

 

Figure 6.13: Comparison of the interaction graphic of N-M between the 3 methods (RSM, RSM+S and EWM)  
and the FEM results 
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The RSM+S presents the N-M interaction surface closest to those obtained through the numerical models 

(FEM). Both the EWM and RSM+S produce an approximate linear form when the stiffener is located at mid 

height, however, the N and M resistances obtained by the EWM are more conservative. 

The resistance benefits of considering the stress shedding are higher for smaller the 𝜃1, that is, the smaller 

the bending moment is. This is observed in Figure 6.14, where values of 𝑘 are increasing, thus decreasing the 

allowed maximum redistribution. In general, it can be concluded that the RSM+S provides very reliable results 

for the slender HSS plate girders under study. 

 

Figure 6.14: Values of k as a function of 𝜃1 
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7. Conclusions and Further Research Works 

7.1. Main Conclusions 

In the initial phase of the study of S690 stander steel plates with one longitudinal stiffener, it was discussed 

in Chapter 4 that the three panel FE models should be adopted with the applied loads at the edge of the 

lateral panels to minimize the effect on the middle one that is being analysed. It was also studied which 

geometric equivalent imperfection attained the more precise ultimate resistances for the case studies. It was 

concluded that IMP1, based on the first buckling modes is the most appropriate. Thus, the shape of the 

equivalent imperfection based on the first buckling N, M, V modes was adopted in the study, but it was 

necessary to combine these modes to analyse the combined N-M-V loadings. 

In Chapter 5 it was concluded that the standard calculation methodology does not consider the stress 

redistribution that occurs on the web with a longitudinal stiffener when the plate is subjected to bending 

moments, something that is noticeable in the high results of Figure 5.1 b), which correspond to a great 

reserve of resistance of the standard formulas for this specific case, being increasingly conservative as the 

longitudinal stiffener is moved up to the compressed part of the web. Through the results obtained when the 

plate girder is subjected to pure forces (N, M and V separately), it was concluded that the best option would 

be to keep the stiffener at mid height of the web for the compression or shear loadings, while if the plate 

girder is subjected to bending moment only, the higher the stiffener is, the better. For the combination of N-

M and M-V loadings, it was concluded the stiffener in the middle of the web turns out to be the best 

commitment. 

The comparative analysis and discussion of the ultimate resistances to the N-M-V interaction obtained using 

the interaction formulas proposed by Biscaya [12, 13, 15] proved they are well calibrated for high strength 

steel S690 plate girders with various positions of the longitudinal stiffener. 

In Chapter 6, a more detailed study of the application of the RSM was performed, with the possibility of 

having some stress shedding from the web to the flanges. It was found that when no shedding is assumed, 

the RSM gives, in general, for plate girders without flanges and submitted to N, M and V separately, higher 

resistances than those obtained with the EWM. This is mainly since the buckling critical stresses obtained 

using the EBP are higher than the ones obtained by the approximate formulations given in the prEN 1993-1-

5 - Annex A. When adding the flanges, the results reverse since the RSM neglects the possibility of the flanges 

receiving some part of the normal stresses applied at the webs. Therefore, this method provides for a general 

plate girder, with a longitudinal stiffener at mid high of the web, lower resistances than the ones obtained 

by the EWM. Regarding the N-M-V interaction study, as the RSM has a quadratic shape, it ends up providing 

results against safety specially for N-V high loadings applied to slender plates. 

Finally, using stress shedding RSM + S (Chapter 6.3) as proposed by Biscaya, it was concluded that this new 

proposal provides very consistent results, being the closest ones to the ultimate resistances obtained by the 

numerical models. 
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7.2. Further Research Works 

During the execution of the present work, several aspects were identified, that deserve further research. 

Some of them are listed in the sequence: 

• Evaluation of the differences in the resistances obtained using the equivalent geometric 

imperfections and the real geometric imperfections with residual stresses, in order to confirm that 

the use of the former is always a conservative an adjusted assumption. 

• Analysis of plate girders with asymmetric flanges subjected to the interaction of N-M-V stresses 

according to the new proposal by Biscaya. 

• Obtain an N-M-V interaction expression that is applicable to cases where one longitudinal stiffener 

is located in the tensioned or compressed diagonal. 

• Development of an expression or graphic figure that can provide the value of 𝑘 as function of the 

web slenderness and ratio between the area of the flanges and the web. 

• Further extend the application of the RSM+S method to plate girders with other geometries and 

submitted to combined loads of bending moment with normal and shear forces. 
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