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Abstract 

Additive Manufacturing has become more and more relevant in the recent years in the 

construction industry, while still being at its initial stage. In particular, Wire-and-Arc Additively 

Manufactured (WAAM) stainless-steel elements have yet to be properly analyzed from a 

structural response point-of-view, though many experimental campaigns and studies are being 

carried out to this day.  

 

This study is focused on the analysis of the results of tests conducted on WAAM-produced 308LSi 

stainless-steel specimens, in order to characterize the mechanical and geometrical properties of 

the printed material and calibrate design values by means of Annex D of Eurocode 0, which 

outlines procedures to carry out the safety analysis of the resistance function, hence the definition 

of partial safety factors, aiming at a semi-probabilistic design approach. 

 

Moreover, by means of available Digital Twins of produced and tested specimens, different 

approaches are followed for the understanding of the influence of geometrical irregularities on 

the behavior of the material, in terms of stress-strain relationship. Regarding this, a series of 

calibrations are performed in order to quantify said influence, with a particular focus on the elastic 

behavior. 
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2 
 

1. Introduction 

1.1 Text organization 

Chapter 1 concerns a general overview on the text (section 1.1) and the objectives of the project 

(section 1.2). 

The text is then divided into two parts: Part A, concerning the statistical analysis of experimental 

data and the calibration of design values by means of the procedures described in Annex D of 

Eurocode 0; and Part B, in which the constitutive behavior of the material is analyzed more in 

depth, in order to evaluate the dependency on the intrinsic roughness and irregularities of the 

WAAM-produced material. 

 

In Part A, Chapter 2 regards the development of 3D printing technologies over the past years, 

especially in relation to the construction industry (section 2.1), an overview of the main processes 

that are employed (section 2.2), and a rundown of advantages and disadvantages of this 

technology (section 2.3). 

Chapter 3 covers in detail Wire-and-Arc Additive Manufacturing, which is the technique adopted 

for the production of the specimens whose results are analyzed later on, and specifically highlights 

the peculiarities and issues that this kind of material carries, and how these might affect designing 

(section 3.2). 

Eurocode 0 [1], and in particular Annex D (section 4.3), is dealt with in Chapter 4, presenting an 

overview on the general methodology followed by the code (section 4.1), as well as how design 

resistance is approached and evaluated (section 4.2). 

Chapter 5 deals with the statistical analysis of the provided experimental data, whose 

characteristics are described in section 5.1, in terms of mechanical (section 5.2) and geometrical 

(section 5.3) properties. 

Chapter 6 is the crux of Part A: it delves into the determination of both characteristic and design 

resistance functions, at yielding (section 6.4) as well as at the ultimate state (section 6.5). Finally, 

this allows for the calibration of the partial safety factors provided by the Code [2].  

All findings and observations regarding part A are then collected and summarized in Chapter 7. 

 

Part B is focused on calibrations of available stress-strain models, in order to decouple the 

mechanical behavior from the geometrical features. 

Chapter 8 provides an overview on Finite Element Analysis: in particular, section 8.1 highlights 

the steps that comprise the so-called Finite Element Method; while section 8.2 underlines 

advantages and limitations of this approach. 
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Chapter 9 regards a first calibration of the stress-strain models of two rough specimens (one 

longitudinal and one transversal), for which Digital Twins are provided: section 9.1 offers a 

general overview on the specimens themselves, as well as on the approach followed for said 

calibration. Section 9.2 defines the general approaches followed for the determination of stress-

strain models. Longitudinal specimen 3A is then thoroughly analyzed in section 9.3, while section 

9.4 focuses on transversal specimen 4D. 

In Chapter 10, the stress-strain model obtained from milled specimens, hence not influenced by 

the geometry, is applied to the Digital Twin: section 10.2 analyzes the mechanical properties of 

longitudinal milled specimens applied to specimen 3A’s geometry; similarly, in section 10.3 the 

averaged mechanical behavior of transversal machined specimens is applied specimen 4D’s 

Digital Twin. 

Following the opposite approach, Chapter 11 analyses a Digital Input Model, hence characterized 

by a regular (effective) geometry, for which the mechanical behavior is that of the rough 

specimen. Section 11.2 delves into the properties of specimen 3A, while section 11.3 focuses on 

specimen 4D. 

Finally, all results of part B are reported and discussed in Chapter 12; while Chapter 13 offers an 

overview on the entire study. 
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1.2 Objectives 

The main objective of this study is to define some initial guidelines for the design of 3D-printed 

stainless-steel structural elements, on two different levels of detail: the first regards the 

determination of characteristic values and safety factors, the second the analysis and calibration 

of stress-strain curves for the development of Finite Element Models. 

 

The focus of Part A is precisely on the application of the procedures delineated in Annex D of 

Eurocode 0, starting from the evaluation of the mechanical and geometrical properties of 3D-

printed stainless-steel, through the acquisition and assessment of experimental testing previously 

performed on WAAM-produced specimens. Said tests have been conducted at the University of 

Bologna by the research group composed by Prof. Tomaso Trombetti, Eng. Dr. Vittoria Laghi 

and P.E. Michele Palermo. 

 

Part B is centered around the analysis and calibration of stress-strain models, aiming at a more 

accurate understanding of the material and its behavior.  

This approach allows to understand in depth what is the influence that the geometrical 

imperfections, which are proper of the WAAM-produced material, have on its mechanical 

behavior, especially within the elastic phase. 
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PART A: DEFINITION OF A DESIGN PROCEDURE TO 

PREDICT THE STRUCTURAL BEHAVIOR OF WAAM-

PRODUCED STAINLESS-STEEL ELEMENTS
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2. Additive Manufacturing (AM) 

2.1 Background on Additive Manufacturing 

3D printing, or, more accurately, Additive Manufacturing (AM), has been extensively studied and 

used over the past few decades, especially for the production of plastics. Regarding metals, this 

technology has been used especially in automotive, aerospace and naval engineering applications, 

with the production of parts, turbines and propellers (Figure 2.1). 

 

Within the construction industry, this technology has been introduced just over the past few years 

and it is still at its initial stage, while steadily developing, nonetheless. As reported in [3], Additive 

Manufacturing processes in construction are related to the production of concrete, polymer and 

metal structures. 

With regards to metals, and in particular steel, the focus has mainly been on modest-scale 

components, such as façade nodes (Figure 2.2) and connections, since this technology allows for 

an optimization of geometries, as described in [4]; although, very recently, the first full-scale 3D 

printed stainless-steel bridge was produced, tested and installed in Amsterdam, and has been open 

to the public starting July 2021 (Figure 2.3). This was achievable through Wire-and-Arc Additive 

Manufacturing (WAAM), discussed more in detail in section 3, which allows for the production 

of large-scale elements, differently from Powder-Based Fusion (PBF) technologies, which had 

been employed so far for the production of small-scale connections, as it provides a higher level 

of precision. 

 

WAAM is more suitable for the construction industry, as it produces elements at a faster rate than 

powder-based techniques. Faster rates of production obviously lead to less precise outcomes; and 

while this would not be feasible in other application fields, such as the previously cited automotive 

and aerospace industries, it can be allowed in construction. 

This will undoubtedly lead to a microstructure characterized by geometrical imperfections [5], 

which, in return, will have an impact on mechanical properties, dependent also on the anisotropic 

nature of the so-produced material [6]: these limitations and peculiarities need to be addressed in 

order to approach the design of structural elements produced using such materials and by means 

of such techniques, with the definition of new guidelines, based on the existing ones expressed in 

the relative Eurocodes. 
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Figure 2.1 – First class-approved 3D-printed ship propeller, 2017 [7] 

 

 

Figure 2.2 – Full-size aluminum prototype Nematox façade node, 2012 [8] 
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Figure 2.3 – First 3D-printed stainless-steel bridge, 2021 [9] 

 

  



 

11 
 

2.2 Overview of Additive Manufacturing techniques for metals 

3D printing technologies for metals can be divided into four main groups, according to the process 

used for their production: liquid-based, solid-based, wire-based and powder-based (Figure 2.4). 

The most widely used processes are powder-based and wire-based (schematized in Table.2.1): 

the first can be divided into power-fed and power-bed. 

 

In power-fed processes, the material is deposited by means of a nozzle, and the energy source can 

either be plasma or laser; the most relevant processes based on the latter are Laser Metal 

Deposition (LMD), Direct Metal Deposition (DMD) and Laser Engineered Net Shaping (LENS). 

In powder-bed processes, the material is stacked on the bed and is melted in order to obtain the 

desired shape, and this can be done either with electrons (Electron Beam Melting – EBM) or laser 

(Direct Metal Laser Sintering – DMLS, Selective Laser Sintering – SLS, and Selective Laser 

Melting – SLM) as the source of energy. 

These processes give more precise outcomes but require extended periods of time and are quite 

expensive, since they require that the metal is previously transformed into powder, which is not 

even entirely employed, due to the process itself. 

 

In wire-based processes, metal wires are employed as they are, and each layer is welded on top 

of the previous one, differently depending on the technique: WAAM (Wire-and-Arc Additive 

Manufacturing) is a Direct Energy Deposition (DED) process in which the heat source is an 

electric arc; in WLAM (Wire Laser Additive Manufacturing) and Shaped Metal Deposition 

(SMD) processes, the wires are melted by means of a laser source; EBFF (Electron Beam 

Freeform Fabrication) requires electrons as the source of energy. 
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Figure 2.4 – Schematization of AM techniques for metals [10] 

 

material type energy source main processes 

powder bed laser DMLS, SLS, SLM 

electrons EBM 

fed laser LMD, DMD, LENS 

plasma - 

    
wire - arc WAAM 

laser WLAM, SMD 

electron EBFF 

Table.2.1 – Main AM processes for metals 
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2.3 Advantages and disadvantages of Additive Manufacturing processes 

There are many advantages in the use of 3D printing for steel elements (Table 2.2). The main 

positive feature is the level of adaptability that these processes carry: this allows for flexibility in 

the planning and designing of new structures and possible further extensions. 

Another advantage is the speed at which elements and components can be produced, and 

especially installed, allowing for shorter construction times, and hence making buildings and 

infrastructures feasible sooner than if they were produced using traditional techniques. 

Furthermore, 3D printing requires less material, as it allows for the production of the desired 

shapes and dimensions and does not need post-processing to eliminate excessive material or the 

use of molds to cast the material beforehand, and allows for the optimization of geometries. This 

also leads to lighter structures, which means that foundations’ dimensions can be decreased, hence 

less material is needed and consequently costs are lower. 

Often, to reduce traditional production costs, it is more convenient to mass produce elements such 

as connections; but with AM processes, these components can be produced singularly, without 

increasing such costs extensively, and even requiring much less storage. 

 

 

Table 2.2 – Advantages of AM production [11] 
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There are, of course, disadvantages as well: the main one is certainly the fact that production 

costs, as of right now, are higher for Additively Manufactured components, as they are still niche 

products, since their development from a design point of view is still at its initial stage and the 

material is still being studied, hence not largely demanded. 

Another downside is the fact that they, in general, require very specific machinery, which is only 

owned and available in few companies, hence it is not that simple to access such products. But, 

again, this issue persists as long as AM processes and products are not well-known and therefore 

more affordable and available on a larger scale. 

The main challenge regarding 3D-printed materials regards their anisotropic nature due to the 

inherent irregular geometry and surface roughness, which must be addressed before these 

materials can be systematically employed in the construction industry. 
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3. Wire-and-Arc Additive Manufacturing (WAAM) 

3.1 Overview of WAAM 

In general, an Additive Manufacturing process requires a heat source, feedstock and a motion 

system that deposits the material provided [12]. 

Wire-and-Arc Additive Manufacturing is a Direct Energy Deposition process that combines an 

electric arc as the heat source and a wire as the feedstock, while motion is provided by either 

numerical computer-controlled supports or a robotic arm. For this process, off-the-shelf 

equipment is employed, namely the welding power source, torches and the wire-feeding system. 

This kind of set up allows for freedom from a dimensional point-of-view, which aligns well with 

the demands of structural engineering applications, which can be characterized by significant 

lengths: the MX3D bridge in Amsterdam is the first example of the extent and capabilities of this 

technology in this field (Figure 2.1). 

This process deposits layers that are 1 to 2 mm thick, resulting in a surface roughness of about 

0.5 mm for single-track deposit, which is acceptable for medium- to large-scale elements, hence 

for structural elements. 

 

In WAAM processes, welding can be performed by different means: 

 GMAW (Gas Metal Arc Welding) 

 GTAW (Gas Tungsten Arc Welding) 

 PAW (Plasma Arc Welding) 

These processes, as well as other set-up parameters regarding the heat source, the deposition of 

the material and the feedstock itself (Table 3.1), widely influence the outcome, and therefore they 

must be explicitly stated: MX3D [9], who produced the tested specimens whose outcomes are 

analyzed later in this thesis, uses a GMAW process, characterized by a continuous wire electrode 

which is drawn from a reel by an automatic wire feeder [3]; the wire is fed through the contact tip 

in the welding torch, while the heat is transferred from the welding arc causing the wire to melt 

[13]. Motion is provided by industrial multi-axis ABB robots, which could theoretically print 

form any angle. 

There are two feasible printing strategies that can be followed in WAAM: continuous printing 

and dot-by-dot printing. According to the latter, the material is deposited by successive points; 

while in continuous printing, as the name suggests, the material is laid in continuous layers. 
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The provided and later analyzed data have been collected from tests performed on specimens 

produced using continuous printing strategy, GMAW process and the parameters reported in 

Table 3.1. 

 

process parameter details value 

deposition power current 100-140 A 

 arc voltage 18-21 V 

   
speed welding speed 15-30 mm/s 

 wire-feed rate 4-8 m/min 

 deposit rate 0.5-2 kg/h 

   
distance and angle layer height 0.5-2 mm 

 electrode-to-layer angle 90° 

   
wire wire grade ER308LSi 

 wire diameter 1 mm 

   
shield gas shield-gas type 98% Ar, 2% CO2 

 shield-gas flow rate 10-20 L/min 

Table 3.1 – Process parameters used by MX3D [3] 
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3.2 Design issues related to WAAM 

Wire-and-Arc Manufacturing presents a series of challenges regarding the produced material, 

which are not characteristic of the traditional one. 

Among these issues, which may concern porosity, residual stresses, cracking and delamination, 

what is of outmost interest from a design point-of-view is the anisotropy of the material as well 

as the irregularities present in the produced geometry. 

 

Regarding the geometry of the 3D-printed element, it is characterized by a rough surface (Figure 

3.1), due to the production technique, which comprises the deposition and welding of wires. 

Additionally, as stated in section 2.1, WAAM produces elements at higher deposition rates than 

other AM techniques, causing the outcomes to be less precise. 

As analyzed in detail in [14], the rough surface of the produced elements causes a variability in 

their cross-sectional area, which may then lead to a non-uniform distribution of stresses, affecting 

the mechanical performance of the material. 

Therefore, it is important to somehow quantify the geometrical irregularity and, consequentially, 

its influence on the mechanical behavior of the material. 

This can be done first by establishing a relationship between nominal and effective dimensions 

(as done in section 5.3.4), and then through a further calibration by means of the definition of 

partial safety factors (performed in chapter 6). 

 

 

Figure 3.1 – Close-up of the rough surface of WAAM specimens [14] 
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Figure 3.2 – Comparison between as-built and machined surfaces [5] 

 

Additionally, the WAAM-produced material is characterized by anisotropy, meaning that the 

material’s behavior is dependent on directionality. Hence, its mechanical properties vary 

depending on the direction loads are applied to the element. 

Therefore, the material must be studied and tested along different directions (elaborated on in 

section 5.2), in order to see how its mechanical properties change, and which are the orientations 

for which it performs best (i.e. presents higher stress levels, higher ductility) and worst. 

 

The mechanical behavior of the material can also be influenced by the rough nature of the 

produced surfaces. Generally, according to previous studies, such as [5], [15], [14], milled 

specimens tend withstand larger stresses. 

Figure 3.3 displays, from a merely qualitative point of view, how stress-strain curves can change 

with respect to load directionality, as well as to whether the specimens are subjected to post-

production processes aimed at obtaining smooth surfaces. 

 

 

Figure 3.3 – Qualitative stress-strain curves depending on printing direction and milling [15] 
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Another process that can influence the mechanical behavior of the material is the cooling strategy. 

This process can, in general, either be controlled or uncontrolled: in the first case, in between the 

deposition of successive layer, compressed air is blown onto the previous layer, hence reducing 

the waiting time during production; the latter simply means that each layer is left to naturally cool 

down, without speeding up the process in any way. 

[14] observes how the main difference in the mechanical response between specimens produced 

adopting active and uncontrolled cooling is that the latter for elongations at rupture that are 1.5-

2x those reached by actively-cooled specimens. 

The differences between the outcomes of the two strategies can also be appreciated in terms of 

effective thickness: in chapter 6, it can be appreciated how, for both directions L and T, specimens 

realized with uncontrolled cooling have larger values of the effective thickness, and in particular, 

on average they are larger than the nominal value. This can be appreciated in terms of a coefficient 

φ, relating effective and nominal values, which is reported in Table 6.1 and Table 6.4, for L and 

T specimens respectively. 

 

Finally, regarding mechanical properties, from a design point-of-view, there are two viable 

approaches: either control the direction the element is produced, so that it can perform at its best 

under the required loading conditions, or deal with the element as if it were isotropic, assuming 

the mechanical properties related to the worst behavior, in order to follow a safe approach. 
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4. Eurocode 0 

Eurocode 0, or EN 1990 [1], establishes principles and requirements for the safety assessment of 

structures, in conjunction with EN 1991 to EN 1999, describing the basis of their design, 

providing guidelines for structural reliability. Furthermore, Eurocode 0 defines a procedure for 

design assisted by testing on the basis of a semi-probabilistic approach; said procedure is 

described in its Annex D.  

 

4.1 Partial safety factor method 

As thoroughly explained in Part 6 of [1], this method assigns safety factors to characteristic values 

of loads and resistances in order to obtain design values for which the following must hold: 

 𝐸𝑑 ≤ 𝑅𝑑  (4.1) 

 

 where: 

Ed is the design value of the action 

 Rd is the design value of the resistance 

 

Safety factors are defined based on either, or both: 

 statistical evaluation of experimental data; 

 calibration to experience from a long building tradition. 

These values should be calibrated in order to reach a reliability level that is as close as possible 

to the target one; this calibration can be performed based on full probabilistic methods, which 

often cannot be carried out due to lack of data, or on First Order Reliability Methods. 

Viable reliability methods are shown in Figure 4.1 below. 
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Figure 4.1 – Reliability methods [1] 

 

Annex B of [1] indicates the appropriate level of safety that should be guaranteed depending on 

the Consequence Class (CC). As reported in Table 4.1, each Consequence Class is defined on the 

basis of the impact that the failure of the structure would have in terms of casualties, as well as 

economic, social and environmental effects. 

 

 

Table 4.1 – Definition of consequence classes [1] 

 

Reliability Classes (RC) are directly associated with Consequence Classes, and correspond to a 

certain range of values of the reliability index β, as shown in Table 4.2. This index expresses the 

probability of failure as defined through the Cumulative Distribution Function (CDF) of the 

standard normal distribution, namely: 

 Pf = 𝛷(−𝛽) (4.2) 
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Table 4.2 – Recommended values for the reliability index β [1] 

 

Annex C of [1] provides the relationship between Pf and β, as reported in Table 4.3. 

The reliability index accounts for scatteredness of both actions and resistances, and it is usually 

expressed as normalized with respect to standard deviations σE and σR, as can be seen in Figure 

4.2, which shows that the design point according to a First Order Reliability Method is the point 

on the failure surface that is closest to the average point in the space of normalized variables. 

 

 

Table 4.3 – Relation between Pf and β [1] 

 

 

Figure 4.2 – Reliability index β according to FORM [1] 

 

According to [16], the target reliability index corresponds to the minimum requirement for human 

safety related to the expected number of fatalities. The nominal life of a structure, i.e. the reference 
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period, depends on the type of structure and its intended use; for most structures, the design life 

is 50 years, and they belong to CC2, hence corresponding to β=3,8. 

The design values of action effects Ed and of resistances Rd should be evaluated such that 

equations (4.3) and (4.4) hold. 

 𝑃(𝐸 > 𝐸𝑑) = 𝛷(+𝛼𝐸𝛽) (4.3) 

 𝑃(𝑅 ≤ 𝑅𝑑) = 𝛷(−𝛼𝑅𝛽) (4.4) 

 where: 

αE, αR are the FORM sensitivity factors, for which |α|≤1 

αE is negative while αR is positive, as to provide the most unfavorable scenario for both acting 

effects and resistances. Annex C considers as valid values for αE and αR, respectively, -0.7 and 

0.8, provided that equation (4.5) is verified. 

 0,16 < 𝜎𝐸 𝜎𝑅⁄ < 7,6 (4.5) 

This assumption is fundamental in order to be able to consider and analyze the resistance function 

without having to account for loading. 

 

There are several safety factors defined throughout the Code, depending on whether they refer 

to resistances or acting loads, and what type of uncertainty they account for. They are reported 

and schematized in Figure 4.3 here below. 

 

 

Figure 4.3 – Relation between individual partial factors [1] 

 

In accordance with Figure 4.3 and [16]: 

 𝛾𝐹 = 𝛾𝑓 × 𝛾𝑆𝑑   (4.6) 

 𝛾𝑀 = 𝛾𝑚 × 𝛾𝑅𝑑  (4.7) 
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4.2 Evaluation of the design resistance 

Section 6 of [1], as stated earlier, is dedicated to the safety verification by means of the partial 

safety method. In particular , Section 6.3.5 proposes three possible alternatives for the definition 

of the design resistance. 

 

4.2.1 Method 1 – general formulation 

In general, the design resistance Rd can be evaluated as: 

 𝑅𝑑 =
1

𝛾𝑅𝑑
𝑅{𝑋𝑑,𝑖; 𝑎𝑑} = 

1

𝛾𝑅𝑑
𝑅 {𝜂𝑖

𝑋𝑘,𝑖

𝛾𝑚,𝑖
; 𝑎𝑑}     𝑖 ≥ 1 (4.8) 

where: 

γRd is a partial safety factor accounting for uncertainties in the resistance model 

 Xd,i is the design value of material property i 

 ad is the design value of geometrical data 

 

According to section 6.3.3 of [1], the design value of a material or product property is generally 

expressed as: 

 𝑋𝑑 = 𝜂
𝑋𝑘

𝛾𝑚
  (4.9) 

where: 

η is the mean value of the conversion factor, and it accounts for volume and scale 

effects, moisture and temperature effects, and any other relevant parameter 

γm  is the partial factor for the material property, accounting for possible unfavorable 

deviations from the characteristic value, as well as the random part of η 

Xk is the characteristic value of the material property 

 

Section 6.3.4 of [1] concerns geometric properties, whose design value generally corresponds to 

the nominal value: 

 𝑎𝑑 = 𝑎𝑛𝑜𝑚  (4.10) 

When the effects of deviations of the geometrical data from the nominal value become significant 

in terms of reliability of the structure, equation (4.10) becomes: 

 𝑎𝑑 = 𝑎𝑛𝑜𝑚 ± 𝛥𝑎  (4.11) 

 where: 

Δa accounts for possible unfavorable deviations from the nominal value, as well as 

the cumulative effect of a simultaneous occurrence of multiple geometrical 

deviations 
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Equation (4.8) can also be simplified as: 

 𝑅𝑑 = 𝑅 {𝜂𝑖
𝑋𝑘,𝑖

𝛾𝑀,𝑖
; 𝑎𝑑}     𝑖 ≥ 1 (4.12) 

 where: 

γM,i  is computed according to equation (4.7) and the specific γm,i; it may also 

incorporate the correction factor ηi 

  

4.2.2 Method 2 – simplified formulation 

Alternatively to equation (4.12), the design resistance can be expressed without explicitly 

determining the design values of all basic variables, simply obtaining it from the characteristic 

value of a material or product resistance: 

 𝑅𝑑 =
𝑅𝑘
𝛾𝑀

 (4.13) 

This formulation can be exploited for products or members made of a single material and also 

sued in connection with Annex D of [1]; furthermore, as noted in [17], it is employed for the 

evaluation of the design resistance of most failure modes of EN 1993 [2]. 

 

4.2.3 Method 3 – non-linearity 

For structures or structural members that are analyzed by mans of non-linear methods and are 

comprised of more than one material, the following expression can be used instead of (4.12) and 

(4.13): 

 𝑅𝑑 =
1

𝛾𝑀,1
𝑅 {𝜂1𝑋𝑘,1; 𝜂𝑖𝑋𝑘,𝑖

𝛾𝑚,1

𝛾𝑚,𝑖
; 𝑎𝑑}     𝑖 > 1 (4.14) 
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4.3 Annex D – Design assisted by testing 

4.3.1 Overview 

Annex D of Eurocode 0 [1] outlines, by means of a semi-probabilistic approach, procedures for 

the safety assessment of design methods. 

Firstly, it defines and differentiates several types of testing depending what their scope is, and 

they can be divided into two main categories, according to [16]: 

 tests whose results are directly used in design, through the application of the statistical 

techniques addressed in Annex D itself, and further explained later on in this section; 

 control or acceptance tests, which are valid whenever there is no availability of test data 

at the time of design. 

 

Furthermore, section D4 of Annex D explains in detail how tests should be planned and carried 

out. This is not of particular interest in the development of this thesis, as the experimental data 

used have been performed accordingly prior to this project. 

 

Regarding the derivation of design values for a material property, a model parameter or a 

resistance, section D5 of Annex D states that it should be either done following either: 

 Method A: assessment of a characteristic value, a safety factor, and possibly a conversion 

factor, needed to determine the design value, in accordance with expressions (4.8), (4.13) 

and (4.14); 

 Method B: direct determination of the design value. 

The derivation of the characteristic value for Method A should account for the scatteredness of 

data, the statistical uncertainty related to the number of tests, and the prior statistical knowledge. 

The partial safety factor should be taken from the appropriate Eurocode, provided that the tests 

are sufficiently similar to the usual field of application in which the partial factor is employed; 

otherwise, they can be calibrated by means of correction factors. 

 

The evaluation of test results is quite a sensitive matter and requires particular attention. 

Firstly, the behavior of test specimens should be compared with theoretical predictions; when this 

does not hold, additional testing may be required. 

The evaluation of test results should be based on statistical methods, as explained in section D6 

of Annex D, given that the following conditions are satisfied: 

 the statistical data are taken from an identified, sufficiently homogeneous population; 

 a sufficient number of observations is available. 
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The level of interpretation of results, in fact, depends on the number of performed tests: 

1. if very few tests are performed, the results must be implemented with extensive prior 

knowledge (Bayesian procedures); 

2. if a larger series of tests is performed, a classical statistical interpretation if possible, with 

the addition of some previous knowledge on the analyzed parameter; 

3. if a very large series of tests is performed, classical statistical interpretation is possible 

without accounting for any prior knowledge on the matter. 

 

4.3.2 Statistical determination of a single property 

Following Method A, namely assessing the characteristic value, the design value of a single 

property is computed as: 

 𝑋𝑑 = 𝜂𝑑
𝑋𝑘(𝑛)

𝛾𝑚
  (4.15) 

 where: 

 ηd is the design value of the conversion factor 

 

The Code allows to define the characteristic value of the analyzed property either following a 

Normal or a Lognormal distribution. 

Which type of Probability Density Function (PDF) better describes the available set of data can 

be determined by means of goodness-of-fit tests, such as the Kolmogorov-Smirnoff test, which 

compares the CDF of a sample with that of a reference probability distribution. Coefficient ks, 

resulting from this test, must be compared with a critical value cv, which depends on the number 

of data and on the significant level α (usually 0.5): the reference probability distribution is 

considered a good fit for the set of data as long as the value of ks is lower than cv. 

 

In case of a Normal distribution: 

 𝑋𝑘(𝑛) = 𝑚𝑥(1 − 𝑘𝑛𝑉𝑥) (4.16) 

 where: 

 n is the number of sample results 

 kn is a factor that depends on the value of VX and is taken from  

 mx is the mean value of the n sample results 

Vx is the coefficient of variation of X, which can be either known from previous 

knowledge or else computed as: 

 𝑉𝑥 =
𝑠𝑥
𝑚𝑥

 (4.17) 

 sx is the estimated value of the standard deviation of X, by definition: 
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 𝑠𝑥 =
∑ (𝑥𝑖 −𝑚𝑥)

2
𝑖

𝑛 − 1
 (4.18) 

 

 

Table 4.4 – Values of kn for the 5% characteristic value [1] 

 

If the sample fits a Lognormal distribution: 

 𝑋𝑘(𝑛) = 𝑒
𝑚𝑦−𝑘𝑛𝑠𝑦 (4.19) 

 where: 

 𝑚𝑦 =
∑ ln(𝑥𝑖)𝑖

𝑛
 (4.20) 

 if Vx is known from prior knowledge 

 𝑠𝑦 = √ln(𝑉𝑥
2 + 1) ≅ 𝑉𝑥 (4.21) 

if Vx is unknown 

 𝑠𝑦 =
√
∑ (ln 𝑥𝑖 −𝑚𝑦)

2
𝑖

𝑛 − 1
 

(4.22) 

 

4.3.3 Statistical determination of resistance models 

Before dealing with the procedure needed to evaluate a resistance model, it is important to 

underline that the validity of said model should be checked by means of statistical interpretation 

of the available test data; if that is not the case, the model should be adjusted and checked again. 

 

Some assumptions are made for the standard evaluation procedure: 

 the resistance function is a function of independent variables X; 

 a sufficient number of tests is available; 

 all relevant properties, both mechanical and geometrical, are measured; 

 the variables in the resistance function are uncorrelated; 

 all variables follow either a Normal or a Lognormal distribution. 
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The standard procedure is comprised of the following steps: 

1. Develop a design model: the design model for the theoretical resistance rt is represented 

by the resistance function expressed in (4.23). 

 𝑟𝑡 = 𝑔𝑟𝑡(𝑋) (4.23) 

2. Compare experimental and theoretical values: the measured properties are put into the 

theoretical resistance function rti in order to compare it with the experimental values rei 

for each test specimen i. 

The points representing each pair of values (rti, rei) should be plotted on a diagram, as 

shown in Figure 4.4; if the resistance function is exact and complete, all the points will 

lie on the line characterized by θ=45°. In reality, the points will present some scatter, and 

the causes of the systematic deviation should be checked either in the test procedures or 

in the resistance function itself. 

 

Figure 4.4 – re-rt diagram [1] 

3. Estimate the mean value correction factor b: the probabilistic model of the resistance can 

be written as reported in expression (4.24). 

 𝑟 = 𝑏𝑟𝑡𝛿 (4.24) 

  where: 

  b is the correction factor, and is the “Least Squares” best fit to the slope 

 𝑏 =
∑𝑟𝑒𝑟𝑡
∑𝑟𝑡

2  (4.25) 

  δ is the error 

The mean value rm of the theoretical resistance function can be computed using the mean 

values Xm of the basic variables. 

 𝑟𝑚 = 𝑏𝑔𝑟𝑡(𝑋𝑚)𝛿 (4.26)  
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4. Estimate the coefficient of variation of the error: the error term δi is computed for each 

specimen i, as expressed in (4.27); it is then expressed in lognormal terms 

(expression(4.28)) and the mean and variance are computed following (4.29) and  (4.30), 

respectively. Finally, the coefficient of variation of the error Vδ is computed as reported 

in (4.31). 

 𝛿𝑖 =
𝑟𝑒𝑖
𝑏𝑟𝑡𝑖

 (4.27) 

 𝛥𝑖 = ln𝛿𝑖 (4.28)  

 𝛥 =
∑ 𝛥𝑖𝑖

𝑛
 (4.29)  

 𝑠𝛥
2 =

∑ (𝛥𝑖 − 𝛥)
2

𝑖

𝑛 − 1
 

(4.30)  

 𝑉𝛿 = √exp(𝑠𝛥
2) − 1 (4.31)  

 

5. Analyze compatibility: in order to build the resistance function, some assumptions have 

been made, and it is necessary to check whether the test population is compatible. This 

can be done by assessing the scatteredness of the (rti,rei) values; in case the scatteredness 

needs to be reduced, one can either: 

 correct the design model in order to account for parameters that had been ignored 

in the definition of the resistance function; 

 modify the correction factor b and the coefficient of variation (CoV) of the error 

Vδ by subdividing the total population into subsets. In this case, kn can still be 

referred to the initial population; furthermore, this subdivision may help 

determine which parameters have the biggest influence on the scatteredness. 

6. Determine the coefficients of variation of the basic variables: the values of the CoV VXi 

for each basic variable Xi are computed as per definition of coefficient of variation; these 

values are then employed for the definition of Vrt of the theoretical resistance function, 

through expression (4.32), valid for simple resistance functions defined, for example, as 

the product of the basic variables. More in general, Vrt should be determined using (4.33). 

 𝑉𝑟𝑡
2 =∑ 𝑉𝑥𝑗

2

𝑗
 (4.32) 

 𝑉𝑟𝑡
2 =

1

𝑔(𝑋𝑚)
2∑ (

𝜕𝑔𝑟𝑡(𝑋𝑗)

𝜕𝑋𝑗
𝜎𝑗)

2

𝑗
 (4.33) 
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7. Determine the characteristic/design value of the resistance:  the scatteredness due to the 

model (Vδ) and that due to the basic variables (Vrt) can be combined into Vr, as reported 

in (4.34). 

 𝑉𝑟
2 + 1 = (𝑉𝛿

2 + 1)(𝑉𝑟𝑡
2 + 1) (4.34)  

 The standard deviations of the lognormal variables are given by: 

 𝑄𝛿 = √ln(𝑉𝛿
2 + 1) (4.35)  

 𝑄𝑟𝑡 = √ln(𝑉𝑟𝑡
2 + 1) (4.36)  

 𝑄 = √ln(𝑉𝑟
2 + 1) (4.37)  

 

Finally, the characteristic resistance rk can be computed as: 

 𝑟𝑘 = 𝑏𝑔𝑟𝑡(𝑋𝑚) exp(−𝑘∞𝛼𝑟𝑡𝑄𝑟𝑡 − 𝑘𝑛𝛼𝛿𝑄𝛿 − 0,5𝑄
2) (4.38)  

  where: 

 𝛼𝑟𝑡 =
𝑄𝑟𝑡
𝑄

 (4.39)  

 𝛼𝛿 =
𝑄𝛿
𝑄

 (4.40) 

  and k∞ and kn can be found in Table 4.4. 

If the number of test specimens is n>30, (4.38) becomes: 

 𝑟𝑘 = 𝑏𝑔𝑟𝑡(𝑋𝑚)exp(−𝑘∞𝑄 − 0,5𝑄
2) (4.41)  

 

The design value of the resistance is found following the same procedure as for the characteristic 

one, though equation (4.38) becomes (4.42), while (4.41) becomes (4.43): 

 𝑟𝑑 = 𝑏𝑔𝑟𝑡(𝑋𝑚) exp(−𝑘𝑑,∞𝛼𝑟𝑡𝑄𝑟𝑡 − 𝑘𝑑,𝑛𝛼𝛿𝑄𝛿 − 0,5𝑄
2) (4.42)  

 𝑟𝑑 = 𝑏𝑔𝑟𝑡(𝑋𝑚) exp(−𝑘𝑑,∞𝑄 − 0,5𝑄
2) (4.43)  

 where kd,∞ and kd,n are reported in Table 4.5. 

 

 

Table 4.5 – Values of kd,n for the ULS design value [1] 
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5. Statistical analysis of experimental results 

5.1 Overview 

Several data sets have been provided, regarding both mechanical and geometrical properties. The 

tested specimens, whose dimensions are reported in Figure 5.1, were both as-built, namely with 

a rough surface, and artificially machined. Furthermore, they are oriented differently with respect 

to the printing direction, i.e. parallel (or longitudinal – L), orthogonal (or transverse – T) and 

inclined at a 45° angle (or diagonal – D), as shown in Figure 5.2, due to the fact that the 3D-

printed material is anisotropic, i.e. behaves differently with respect to the direction of the applied 

load, as more thoroughly explained in section 3.2. 

 

 

Figure 5.1 – Nominal dimensions (in mm) of test specimen [18] 

 

 

Figure 5.2 – Orientation of the test specimens [3] 
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5.2 Mechanical properties 

In this dissertation, mechanical properties are only analyzed for machined specimens, i.e. 

mechanically milled samples, hence having a polished, more uniform finish, rather than as-built 

ones, which instead present a rough surface. The purpose of this is to have mechanical properties 

that are independent on geometrical irregularities, whose influence will be analyzed separately 

later on. 

 

5.2.1 Experimental results 

The results are taken from a set of 20 tensile tests performed on specimens oriented according to 

different inclinations with respect to the printing direction, as reported in Figure 5.2. Said tests 

were performed as follows: 5 on longitudinal (L) specimens, 5 on transverse (T) specimens, and 

10 on diagonal (D) specimens. For sake of conciseness, said directions will be referred to as L, T 

and D respectively from this point onwards. 

 

The analyzed mechanical properties are: Young’s modulus E, 0.01% proof stress σ0.01%, 0.2% 

proof stress σ0.2%, ultimate stress σu, and ultimate strain εu. The results obtained from the tensile 

tests are reported in Table 5.1, in terms of mean value μ, standard deviation σ and coefficient of 

variation V. 

 

parameter direction μ σ V 

E [GPa] L 138,54 5,65 0,041 

 T 113,41 2,74 0,024 

 D 247,29 32,85 0,133 

     
σ0.01% [MPa] L 252,83 33,86 0,134 

 T 250,79 37,11 0,148 

 D 285,42 72,70 0,255 

     
σ0.2% [MPa] L 340,33 13,99 0,041 

 T 358,03 14,94 0,042 

 D 416,97 39,56 0,095 

     
σu [MPa] L 564,47 18,26 0,032 

 T 570,32 30,01 0,053 

 D 616,05 58,79 0,095 

     
εu [%] L 26,53 3,82 0,144 

 T 23,68 3,94 0,167 

 D 27,76 7,07 0,255 

Table 5.1 – Key mechanical parameters from tensile testing 
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Figure 5.3 below shows a graphical overview of said mechanical parameters for each direction, 

in terms of mean value and standard deviation. 

 

 

  

  

Figure 5.3 – Key mechanical parameters from tensile testing 

 

These results make it very evident how anisotropic the material is, and hence how mechanical 

properties are dependent on the loading direction. 
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The main difference is found in terms of Young’s modulus: D specimens present values that are, 

on average, about 120% larger than those for T specimens and about 80% larger than L specimens. 

Furthermore, it can be noticed how, for all of the analyzed mechanical properties, the diagonal 

direction performs better than the other two orientations. On the contrary, direction T presents the 

worst behavior in terms of all key mechanical properties, with the exception of 0.2% proof and 

ultimate stresses, for which L specimens present a slightly lower average value. 

Additionally, ultimate strain is the property for which there is most uncertainty, as coefficients of 

variation are as high as 0.190 on average over the three directions; this is especially significant 

for D specimens. 

 

5.2.2 Statistical interpretation of experimental data 

In order to be able to apply the procedures outlined in Annex D, and specified in section 4.3.2 of 

this dissertation, the sets of experimental data should follow either a Normal or Lognormal 

distribution. 

 

For this reason, statistical analyses are carried out in order to find the “best-fit” distribution of 

each mechanical parameter in each direction according to maximum-likelihood estimators, 

assuming Normal and Lognormal distribution models. 

A comparison between the statistical distributions resulting from the collected experimental data 

and the best-fit cumulative (CDF) and probability (PDF) density functions is provided below: in 

Figure 5.4 for Young’s modulus E, in Figure 5.5 for 0.01% proof stress σ0.01%, in Figure 5.6 for 

0.2% proof stress σ0.2%, in Figure 5.7 for ultimate stress σu, and, finally, in Figure 5.8 for ultimate 

strain εu. 

In the PDF plots, experimental data are presented in terms of relative frequency, scaled with 

reference to the magnitude of each statistical population. 

 

Qualitatively speaking, in accordance with the values of the coefficients of variation, reported in 

Table 5.1, for Young’s modulus and 0.2% proof stress in directions L and T, as well as ultimate 

stress in direction L, the Normal and Lognormal distributions are almost coincident. 

Similarly, 0.01% proof stress and ultimate strain present Normal and Lognormal best-fit 

distributions that are quite different from each other, especially for D specimens. 

From a numerical point of view, results in terms of mean values, standard deviations and 

coefficients of variation are reported in Table 5.2.  
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Figure 5.4 – Statistical distributions of Young’s modulus E 

 

  

  

  

Figure 5.5 – Statistical distributions of 0.01% proof stress σ0.01% 
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Figure 5.6 – Statistical distributions of 0.2% proof stress σ0.2% 

 

  

  

  

Figure 5.7 – Statistical distributions of ultimate stress σu 
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Figure 5.8 – Statistical distributions of ultimate strain εu 

 

   Normal  Lognormal 

   μN σN VN  μL σL VL 

E [GPa] L  138,54 6,31 0,046  138,57 6,30 0,045 

 T  113,41 3,07 0,027  113,42 3,07 0,027 

 D  247,29 44,71 0,181  247,64 36,50 0,147 

          
σ0.01% [MPa] L  252,83 37,85 0,150  253,34 37,24 0,147 

 T  250,79 41,50 0,165  251,32 39,75 0,158 

 D  285,42 76,63 0,268  285,72 69,62 0,244 

          
σ0.2% [MPa] L  340,33 15,64 0,046  340,41 15,71 0,046 

 T  358,03 16,71 0,047  358,12 17,15 0,048 

 D  416,97 41,70 0,100  417,10 39,71 0,095 

          
σu [MPa] L  564,47 20,41 0,036  564,54 20,26 0,036 

 T  570,32 33,56 0,059  570,54 34,39 0,060 

 D  616,05 61,97 0,101  616,27 59,78 0,097 

          
εu [%] L  26,53 4,27 0,161  26,61 4,54 0,171 

 T  26,18 4,92 0,188  26,27 4,91 0,187 

 D  27,76 7,46 0,269  27,88 7,74 0,278 

Table 5.2 – Representative values for best-fit Normal and Lognormal distributions for key mechanical parameters 
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Kolmogorov-Smirnoff test is run for each parameter, in order to evaluate the “goodness of fit” of 

the best-fit distributions with respect to the relative experimental data set. 

This test evaluates the maximum distance between the best-fit CDF and the empirical one, 

returning a value for the so-called KS coefficient. For the best-fit distribution to be a valid model 

for the data set, KS should be smaller than a critical value CV, assessed based on the magnitude 

of the set’s population and the significance level α, which is usually set to 5%, as in the case of 

the evaluations carried out here. 

The results of Kolmogorov-Smirnoff tests are reported in Table 5.3 below. It is evident how both 

Normal and Lognormal best-fit distributions are valid models for all the considered mechanical 

parameters in all directions. 

 

     Normal  Lognormal 

   CV  KSN  KSL 

E [GPa] L  0,5633  0,1379  0,1308 

 T  0,5633  0,2450  0,2417 

 D  0,4093  0,1869  0,2066 

        
σ0.01% [MPa] L  0,5633  0,2182  0,1945 

 T  0,5633  0,2246  0,1966 

 D  0,4093  0,2558  0,2059 

        
σ0.2% [MPa] L  0,5633  0,2257  0,2254 

 T  0,5633  0,3150  0,3221 

 D  0,4093  0,1866  0,1707 

        
σu [MPa] L  0,5633  0,3365  0,3358 

 T  0,5633  0,2422  0,2465 

 D  0,4093  0,2518  0,2326 

        
εu [%] L  0,5633  0,1963  0,2152 

 T  0,5633  0,1954  0,1979 

 D  0,4093  0,2267  0,2336 

Table 5.3 – Kolmogorov-Smirnoff test results for Normal and Lognormal best-fit distributions for key mechanical 
parameters 
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5.2.3 Definition of characteristic values 

Since both Normal and Lognormal best-fit distributions are good estimators of the data sets 

provided, characteristic values for the analyzed mechanical parameters can be assessed according 

to expressions (4.16) and (4.19), respectively. 

According to Table 4.4, the value for kn is equal to 2.33 for a population of 5 (direction L and T), 

and to 1.92 for 10 samples (direction D), given that Vx is unknown prior.  

 

From Table 5.3, it is possible to appreciate whether the Normal or Lognormal approach is more 

fitting for each parameter. 

Table 5.4 provides the characteristic values obtained following the approach from Annex D 

corresponding to the most suitable distribution. Said values are presented graphically in Figure 

5.9, which also highlights the values for Young’s modulus, yielding and ultimate stresses 

provided by the code for 304L austenitic stainless steel (Table 5.5), to which grade 308LSi 

stainless-steel wires can be referred to in terms of mechanical behavior. 

 

   distribution  characteristic value 

E [GPa] L  Lognormal  135,48 

 T  Lognormal  111,88 

 D  Normal  184,23 

      
σ0.01% [MPa] L  Lognormal  235,66 

 T  Lognormal  232,29 

 D  Lognormal  255,75 

      
σ0.2% [MPa] L  Lognormal  333,83 

 T  Normal  323,22 

 D  Normal  402,85 

      
σu [MPa] L  Lognormal  556,78 

 T  Normal  500,39 

 D  Lognormal  595,89 

      
εu [%] L  Normal  17,62 

 T  Normal  14,49 

 D  Normal  14,18 

Table 5.4 – Characteristic values of key mechanical parameters according to the best fitting distributions 

 

type of 

stainless steel 

 grade  E [GPa]  fy [MPa]  fu [MPa] 

Austenitic  1.4301  200  230  540 

Table 5.5 – Nominal values of E, fy and fu for 304L austenitic stainless-steel [19] 



 

43 
 

 

  

  

Figure 5.9 – Characteristic values of key mechanical parameters according to the best fitting distributions 

 

The characteristic values of Young’s modulus for all three directions are smaller than the nominal 

one for the traditional material, more significantly so for directions L and T: that for direction L 

is about 68% of the nominal value, while that for direction T is about 56%. This means that, for 

the same amount of strain, in the elastic phase the WAAM-produced material reaches lower 

strains than the conventional material. 
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Values of 0.2% proof stress, on the contrary, are larger for the 3D-printed material in all 

considered directions than the nominal value fy provided for 304L stainless-steel: for L specimens, 

it is 45% larger than fy, 40% for T specimens, and 75% for D specimens. Consequently, according 

to these results, the strain at yielding for the Wire-and-Arc Additively Manufactured material is 

far larger than that of the traditionally-produced material. 

The behavior in terms of ultimate stress is comparable to that of conventional 304L stainless-steel 

for L specimens, it is about 8% smaller for T specimens and about 10% larger for D specimens. 

 

The characteristic values of 0.01% proof stress are quite similar for the three directions, in the 

range of 230-255 MPa, with D specimens presenting the largest value and T having the smallest, 

despite it being larger than the nominal yielding stress value for the conventionally-produced 

material, nonetheless. 

Finally, in terms of ultimate strain, directions T and D present characteristic values that are 

comparable and are about 80% of that of L specimens. 
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5.3 Geometrical properties 

As mechanical properties were analyzed on milled specimens only, there is the need to 

characterize the geometry of rough specimens, aiming at the definition of a corrective coefficient 

φ that carries the influence of geometrical irregularities and that is to be applied to adjust nominal 

dimensions of elements, which is particularly useful from a design point-of-view.  

 

5.3.1 Experimental results 

The analyzed results are taken from a set of 40 specimens, 20 of which oriented along parallelly 

with respect to the deposition direction (or longitudinal – L) and 20 along the orthogonal direction 

(or transversal – T). Again, for sake of conciseness, these directions will be referred to as L and 

T from here onwards. 

 

The nominal dimensions of the specimens are reported in Figure 5.1. 

The geometry of the specimens has been characterized only in terms of average effective 

thickness teff, as it is the geometrical feature that characterizes the specimens’ roughness. 

These values have been previously defined by means of volume measurements on an analogic 

hydraulic scale, exploiting Archimedes’ principle. The results obtained from such measurements 

are reported in Table 5.6, in terms of mean value μ, standard deviation σ and coefficient of 

variation V. 

 

The same results are provided from a graphical perspective in Figure 5.10, in terms of mean value 

and standard deviation. 

 

parameter direction μ σ V 

teff [mm] L 3,890 0,394 0,101 

 T 3,948 0,383 0,097 

Table 5.6 – Key geometrical parameter from volume-based measurements 

 

From these outcomes, it is apparent how the orientation of the specimens does not significantly 

influence geometry, in terms of average effective thickness. 
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Figure 5.10 – Key geometrical parameter from volume-based measurements 

 

5.3.2 Statistical interpretation of experimental data 

As for mechanical parameters, it is necessary to refer the data sets to either a Normal or Lognormal 

distribution, in order to be able to apply the procedures delineated in Annex D of Eurocode 0 and 

examined in section 4.3.2 of this dissertation. 

 

Therefore, the aim is to carry out statistical analyses and find the “best-fit” distribution of both 

parameters in both directions according to maximum-likelihood estimators, assuming Normal and 

Lognormal distribution models. 

 

Figure 5.11 provides a representation of the relative scaled frequency and the best-fit probability 

density functions (PDF), as well as the empirical and best-fit cumulative density functions (CDF), 

for thickness teff. 

 

Since teff is characterized by small coefficients of variation, it is to be expected that Normal and 

Lognormal best-fit distributions are graphically almost overlapped. 

Practically, numerical results in terms of mean values, standard deviations and coefficients of 

variation are reported in Table 5.7. 
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Figure 5.11 – Statistical distributions of average effective thickness teff 

 

   Normal  Lognormal 

   μN σN VN  μL σL VL 

teff [mm] L  3,891 0,405 0,104  3,891 0,400 0,103 

 T  3,945 0,391 0,099  3,946 0,394 0,100 

Table 5.7 – Representative values for best-fit Normal and Lognormal distributions for key geometrical parameters 

 

The best-fit Normal and Lognormal distributions for each parameter and each direction are 

evaluated in terms of “goodness of fit” by means of Kolmogorov-Smirnoff test. 

 

The results of these tests are reported in Table 5.8, in terms of KS coefficient as well as critical 

value CV for a significance level α of 0.05. Both Normal and Lognormal best-fit distributions 

provide a suitable model for the considered geometrical properties in both directions. 

 

     Normal  Lognormal 

   CV  KSN  KSL 

teff [mm] L  0,2941  0,2156  0,2077 

 T  0,2941  0,2000  0,1876 

Table 5.8 – Kolmogorov-Smirnoff test results for Normal and Lognormal best-fit distributions for key geometrical 

parameter 
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5.3.3 Definition of characteristic values 

Taking the best-fit Lognormal distribution as the most suitable one for both data sets, the 

characteristic values for teff are assessed according to expression (4.19). 

 

According to Table 4.4, the value for kn for a set of 20 specimens is equal to 1,76, which is valid 

for both L and T directions, as the coefficients of variation of the parameters are not known 

beforehand. 

 

Table 5.9 provides the characteristic values obtained following the approach from Annex D 

corresponding to the Lognormal distribution, hence according to (4.19). Said values are presented 

graphically in Figure 5.12, which also highlights the nominal value of the thickness of the 

specimens represented in Figure 5.1, which is listed in Table 5.10. 

 

   distribution  characteristic value 

teff [mm] L  Lognormal  3,39 

 T  Lognormal  3,45 

Table 5.9 – Characteristic values of key geometrical parameter according to the best fitting distributions 

 

 

Figure 5.12 – Characteristic values of key geometrical parameter according to the best fitting distributions 

 

type of specimen tnom [mm] Aavg [mm2] 

“Dog-bone” 4,0 97,02 

Table 5.10 – Nominal values of test specimens’ dimensions [18] 
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5.3.4 Definition of the geometrical corrective factor φ 

Figure 5.12 provides an evaluation of the effective values of thickness, and their comparison to 

the nominal ones. It is clear how for both directions considered, the effective value is lower than 

the nominal one. 

 

One of the aims of this study is to quantify a corrective factor φ that can be related to the nominal 

dimensions of a structural element, so that the geometrical imperfections that inherently 

characterize the 3D-printing process are taken into account at the design stage, without having to 

produce specimens and perform any further hand-measurements or comprehensive 3-dimensional 

scans. 

 

In order to do this, corrective factor φ is defined as the ratio between the values previously 

obtained and indicated in Table 5.9 and the respective nominal one, according to Table 5.10. 

Table 5.11 reports the values of φ that have computed as just indicated. As L and T specimens 

provide results that are quite similar to each other, it is fair to evaluate φ as an average of the 

results obtained for each direction separately. 

 

   nominal 

values 

 effective 

values 

 φ [-]  φavg [-] 

t [mm] L  4,00  3,39  0,847  0,855 

 T  4,00  3,45  0,862   

Table 5.11 – Assessment of geometrical corrective factor φ 
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6. Resistance function 

6.1 Overview 

The scope of this chapter is to calibrate partial safety factors that are already defined in the existing 

Code [19]. This is achieved by means of the procedure outlined in Annex D [1], and further 

explained in section 4.3.3, and by exploiting the characteristic values obtained in section 5.2 for 

mechanical properties, and more specifically yielding and ultimate strengths, and in section 5.3 

for geometrical properties, namely the geometrical corrective coefficient φ. 

 

The procedure thoroughly described in section 4.3.3 is used to define the design resistance 

function rd, while the characteristic resistance function rk is defined by means of the single 

properties’ characteristic values, defined in chapter 5. Finally, as per its definition, the safety 

factor is defined as the ratio between characteristic and design values of the resistance function; 

following, overall, a similar approach to that carried out in [17]. 

 

This method is carried out for both yielding and ultimate resistances, in order to properly calibrate 

the respective partial safety factors. Furthermore, both are evaluated for directions L and T: 

separately, as to give more precise results that could be needed for more specific and accurate 

design applications, as well as together, in order to provide a value that is independent on the 

orientation. 

The analyzed population is comprised of 16 specimens oriented in the longitudinal direction (L) 

and 16 in the transversal direction (T), all of which present a rough surface, namely they have not 

been subjected to any milling, and a nominal geometry that is shown in Figure 5.1. 
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6.2 Procedure 

The procedure followed for the definition of design and characteristic resistance functions, and, 

therefore, calibrate the partial safety factors, is delineated hereafter: 

1. Development of the design model: the theoretical resistance function rt is defined as a 

function of basic variables X; 

2. Comparison between experimental and theoretical values: for each specimen i, the 

experimental resistance function rei is provided by the outcomes of laboratory testing, 

while rti is computed according to the defined model; 

3. Estimation of correction factor b: b is defined and computed according to equation (4.25); 

4. Estimation of the CoV of the error: Vδ, obtained through expression (4.31), represents the 

scatteredness due to the model defined in step 1; 

5. Analysis of compatibility: it is necessary to verify whether the test population is 

compatible with the model, namely if the variability of the model is small enough; 

6. Definition of the CoV of the basic variables: the coefficients of variation for each basic 

variable are computed, and then properly combined into Vrt, which is representative of 

the scatteredness of the results given by the basic variables, according to equation (4.32); 

7. Definition of the design resistance function: rd is computed according to either expression 

(4.42) or (4.43); 

8. Definition of the characteristic resistance function: following a similar approach to that 

introduced in [17], rk is defined through the reference characteristic values of the basic 

variables, as obtained in chapter 5; 

9. Computation of the partial safety factor: γ*M is defined according to its definition, i.e. as 

the ratio between characteristic and design values of the resistance function; 

10. Definition of the corrective factor: in order to maintain the values of the partial safety 

factor defined in the codes, and specifically in [19] for stainless-steel, that obtained in 

step 9 is scaled by means of a corrective factor η*. 
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6.3 Problem formulation 

Before performing evaluations and calculations, the problem must be adequately formulated. 

In general, the tensile resistance is defined as: 

 𝑅𝑖 = 𝐴𝑒𝑓𝑓,𝑖𝑓𝑖𝜂 (6.1)  

 where: 

Aeff,i is the effective cross-sectional aera of element i, characterized by a certain 

statistical distribution 

fi is the strength of the material of element i, also characterized by a statistical 

distribution 

 η is the uncertainty associated to the model 

 

One crucial aspect in the definition of the resistance function, according to Annex D of EC0 [1], 

is that the basic variables should be independent on each other. 

For this reason, it is not possible to define both strengths and effective cross-sectional areas as 

basic variables, since, from experimental data, strengths are defined through the value of Aeff, 

namely: 

 𝑓𝑖 =
𝐹𝑖

𝐴𝑒𝑓𝑓,𝑖
 (6.2)  

 where: 

 Fi is the reaction force recorded for specimen i in correspondence of the target 

strength, be it yielding or ultimate 

 

As the geometrical characterization can only be done on rough specimens, while mechanical 

properties can be extracted from milled ones, the value for the strength (yielding or ultimate) for 

the definition of the theoretical resistance function for each specimen i will be taken as the average 

value for milled specimens, as indicated in Table 5.1. 

 

According to this reasoning, the only basic variable in the definition of the resistance function is 

the effective cross-sectional area, and, more specifically, geometrical corrective factor φ. 

This way, the influence of the roughness on the resistance will be highlighted, while strengths are 

totally independent on any geometrical irregularity, as they are defined for machined specimens. 
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6.4 Yielding resistance 

As defined in the previous paragraph, the first step to carry out is the definition of the theoretical 

resistance function. It is defined as: 

 𝑟𝑡 = 𝜑𝐴𝑛𝑓𝑦 (6.3)  

 where: 

 φ is the geometrical corrective factor, as defined in section 5.3.4, namely 

 𝜑 =
𝑡𝑒𝑓𝑓

𝑡𝑛𝑜𝑚
 (6.4)  

An is the nominal cross-sectional area referred to the gauge length; hence, recalling 

Figure 5.1, it is equal to 80 mm2 

 fy is the yielding strength or 0.2% proof stress from milled specimens 

 

Therefore the basic variable for the so-defined resistance function are the geometrical corrective 

factor φ and the yielding strength fy. 

 

6.4.1 Longitudinal direction 

In Table 6.1 are reported all the values for basic variable φ obtained from the tested specimens, 

the relative values of rti computed according to expression (6.3), as well as the mean value of fy  

obtained for milled specimens, and the values of the reaction forces reached at yielding by each 

specimen, which correspond to the experimental resistance function rei. 

In order not to bias the results, the value of the nominal area for the computation of r ti for each 

specimen is evaluated as: 

 𝐴𝑛𝑖 = 𝑡𝑛𝐿𝑖  (6.5)  

 where: 

 tn is the nominal thickness of the specimens (4 mm) 

 Li is the width of the specimen referred to the gauge length 

This specification is made because the value of Li does not depend on the production of the 

material, but rather on how precisely the specimen were cut out of the printed plates, while the 

focus is on the roughness of the WAAM-produced material, and hence any variability should be 

solely related to the effective thickness. 

 

Ideally, if the theoretical resistance function were exact and complete, all (r ti,rei) points would lie 

on the line for which re=rt. As this does not find correspondence within reality, the point will 

present some scatter with respect to said line, as can be seen in Figure 6.1. 
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  theoretical     experimental 

specimen  φ [-] L [mm] σ0.2% [MPa] rti [kN]  rei [kN] 

1A  0,889 19,8 340,33 23,97  24,96 

1bisA  0,829 20,0 340,33 22,57  25,09 

1B  0,915 20,0 340,33 24,91  23,62 

1bisB  0,886 20,8 340,33 25,09  25,28 

2A  0,899 20,0 340,33 24,46  25,47 

2bisA  0,879 19,5 340,33 23,35  26,67 

2B  0,948 20,4 340,33 26,33  23,87 

2bisB  0,915 20,0 340,33 24,90  24,23 

4A  1,125 28,2 340,33 43,18  39,27 

4bisA  1,091 22,6 340,33 33,58  38,39 

4B  1,159 22,6 340,33 35,67  31,05 

4bisB  1,032 27,6 340,33 38,79  35,72 

5A  1,080 27,6 340,33 40,57  38,02 

5bisA  1,057 27,6 340,33 39,72  35,67 

5B  1,064 30,0 340,33 43,45  39,52 

5bisB  1,075 25,3 340,33 37,03  33,04 

Table 6.1 – Values of rti and rei for L specimens at yielding 

 

 

Figure 6.1 – re-rt diagram for L specimens at yielding 
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The theoretical and experimental values of the resistance function are related by means of the 

corrective factor b, which is defined as the “Least Squares” best fit to the slope, according to 

expression (4.25), resulting in b = 0,953. This result is reported in Figure 6.2, where it is evident 

how it almost coincides with the ideal line. 

 

 

Figure 6.2 – re-rt diagram for L specimens at yielding, with best-fit slope (b=0,953) 

 

The error carried by the model for each specimen i, according to the problem formulation 

described in section 6.3, is directly related to the influence of the repeatability of the roughness 

among specimens. 

Numerically, it is evaluated according to expression (4.27), and then evaluated in lognormal 

terms, as expressed by (4.28): these results are reported in Table 6.2. 

The mean value and the variance of the error in lognormal terms are then defined through 

equations (4.29) and (4.30), respectively. Finally, the coefficient of variation is evaluated by 

exploiting expression (4.31), representing the scatteredness given by the model, defined as 

indicated in (6.3). 

The coefficient of variation of the error is, in this case, Vδ = 0,092. 

 

In order to build the resistance function, some assumptions have been made, and it is necessary 

to check whether the test population is compatible with the model. 

The scatteredness of the (rti,rei) values is represented by the value of Vδ. Due to the intrinsic 

uncertainties that characterize the WAAM process and the scarce repeatability of the available 

data, it is fair to assume that coefficients of variation related to the model are valid up to 10%. 
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Therefore, being Vδ = 0,092, considering the assumption above, the compatibility is checked. 

 

specimen  δ [-] Δ [-] 

1A  1,093 0,088 

1bisA  1,166 0,154 

1B  0,995 -0,005 

1bisB  1,057 0,055 

2A  1,092 0,088 

2bisA  1,199 0,181 

2B  0,951 -0,050 

2bisB  1,021 0,021 

4A  0,954 -0,047 

4bisA  1,200 0,182 

4B  0,913 -0,091 

4bisB  0,966 -0,034 

5A  0,983 -0,017 

5bisA  0,942 -0,059 

5B  0,954 -0,047 

5bisB  0,936 -0,066 

Table 6.2 – Values of δi and Δi for L specimens at yielding 

 

As there is only one basic variable defining the resistance function, the overall scatteredness 

related to basic variables Vrt is simply: 

 𝑉𝑟𝑡 = 𝑉𝜑 (6.6)  

After evaluating the mean m and the standard deviation s for geometrical corrective coefficient 

φ, its coefficients of variation is, by definition, computed as the ratio between s and m, resulting 

in Vφ = 0,102. 

 

The overall scatteredness Vr is given by both Vδ and Vrt, and it is obtained through expression 

(4.34), hence: 

 𝑉𝑟 = √(𝑉𝑟𝑡
2 + 1)(𝑉𝛿

2 + 1) − 1 (6.7)  

The global scatteredness given by the model and the basic variables is Vr = 0,138. 

 

Standard deviations Vδ, Vrt and Vr can be expressed in lognormal terms, by means of equations 

(4.35), (4.36) and (4.37), respectively. 

Qδ and Qrt can then be normalized with respect to Q, according to expressions (4.40) and (4.39), 

correspondingly. 
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The mean value of the theoretical function rtm is computed, as indicated in (6.8), as the resistance 

function evaluated for the mean value of the basic variable (mφ = 0,990), resulting in rtm = 26,96 

kN. 

 𝑟𝑡𝑚 = 𝑚𝜑𝐴𝑛𝑓𝑦 (6.8)  

 

In order to compute the value of the design resistance function rd, according to expression (4.42), 

the value of kn,d must be defined based on Table 4.5: as the number of specimens analyzed is 16, 

k16,d is evaluated by means of linear interpolation, and it is equal to 3,988. 

The resulting value for the design resistance function is rd = 15,84 kN. 

 

The characteristic value of the resistance function rk is evaluated as: 

 𝑟𝑘 = 𝜑𝑘𝐴𝑛𝑓𝑦𝑘 (6.9)  

 where: 

 φk = 0,855  as computed in section 5.3.4 

 An = 80,00 mm2 according to Figure 5.1 

 fyk = 333,8 MPa  as computed in section 5.2.3 for L specimens 

The computed value for the characteristic resistance function is rk = 22,83 kN. 

In general, the partial safety factor γ*M is computed as: 

 𝛾𝑀
∗ =

𝑟𝑘
𝑟𝑑

 (6.10)  

According to [19], the partial factor for the resistance of cross-sections to excessive yielding is 

γM0 = 1,10.  

 

In general, the design tensile resistance at yielding is evaluated as: 

 𝑅𝑦𝑑 =
1

𝛾𝑀0
𝐴𝑒𝑓𝑓𝑓𝑦𝑘 (6.11)  

In order for the partial safety factor to remain the same as those found in the code [19] (in general, 

γM), a coefficient α* is introduced to account for the computed γ*M as: 

 𝛼∗ =
𝛾𝑀
𝛾𝑀
∗  (6.12)  

Being γ*M0 = 1,442, α*0 = 0,76. 

 

Furthermore, as the effective cross-sectional area Aeff is defined through the nominal value An by 

means of the geometrical corrective factor φk, as expressed in equation (6.13), the design tensile 

resistance at yielding Ryd can be formulated as reported in expression (6.14). 
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 𝐴𝑒𝑓𝑓 = 𝜑𝑘𝐴𝑛  (6.13)  

 𝑅𝑦𝑑 = (𝛼0
∗
1

𝛾𝑀0
) (𝜑𝑘𝐴𝑛)𝑓𝑦𝑘 (6.14)  

 

Finally, corrective factor η* is defined accounting both for coefficient α*, which calibrates the 

partial safety factor, and for coefficient φk, which corrects the nominal value of the cross-sectional 

area, and is the same in both L and T directions; namely: 

 𝜂∗ = 𝛼∗𝜑𝑘 (6.15)  

The resulting corrective factor is η*0 = 0,65. 

 

Therefore, Ryd can be expressed as: 

 𝑅𝑦𝑑 = 𝜂0
∗ (

1

𝛾𝑀0
𝐴𝑛𝑓𝑦𝑘) (6.16)  

 

All the numerical data and results obtained for the evaluation of the resistance of L specimens at 

yielding, following the procedure described in section 6.2, are reported in Table 6.3 below. 
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step  parameter value unit 

step 3 correction factor b b 0,953 - 

     
step 4 CoV of the error Vδ Δ 0,022 - 

  sΔ
2 0,008 - 

  Vδ 0,092 - 

     
step 6 CoV of basic variables Vrt mφ 0,990 - 

  sφ 0,101 - 

  Vφ 0,102 - 

     
  Vrt 0,102 - 

     
step 7 design resistance rd Vr 0,138 - 

     
  Qδ 0,091 - 

  Qrt 0,102 - 

  Q 0,137 - 

     
  αδ 0,667 - 

  αrt 0,745 - 

     
  rtm 26,96 kN 

     
  rd 15,84 kN 

     
step 8 characteristic resistance rk φk 0,855 - 

  An 80,00 mm2 

  fyk 333,8 MPa 

     
  rk 22,83 kN 

     
step 9 partial safety factor γ*M γ*M0 1,442 - 

     
step 10 corrective factor η* α*0 0,76 - 

     
  η*0 0,65 - 

Table 6.3 – Data and results for the yielding resistance of L specimens 
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6.4.2 Transversal direction 

Following the same approach used for the L direction, in Table 6.4 are reported the value of basic 

variable φ from the tested as-built T specimens, the mean value of σ0.2% from milled T specimens 

(Table 5.1), and the values of rti computed according to expression (6.3), as well as the values of 

the reaction force reached at yielding by each specimen during testing, which correspond to rei. 

 

  theoretical     experimental 

specimen  φ [-] L [mm] σ0.2% [MPa] rti [kN]  rei [kN] 

1C  0,999 20,1 358,03 28,75  24,41 

1bisC  0,998 20,4 358,03 29,15  24,24 

1D  0,914 20,0 358,03 26,18  25,86 

1bisD  0,905 19,9 358,03 25,78  24,21 

2C  0,906 19,5 358,03 25,29  23,97 

2bisC  0,928 20,0 358,03 26,58  24,93 

2D  0,936 19,6 358,03 26,28  24,22 

2bisD  0,930 20,2 358,03 26,92  23,07 

4C  1,081 22,8 358,03 35,31  30,32 

4bisC  1,072 26,6 358,03 40,85  34,69 

4D  1,141 22,7 358,03 37,09  28,33 

4Dbis  1,107 26,0 358,03 41,22  33,92 

5C  1,100 29,4 358,03 46,33  38,14 

5bisC  1,118 25,4 358,03 40,68  31,95 

5D  1,061 30,5 358,03 46,34  39,94 

5bisD  1,058 27,5 358,03 41,68  35,13 

Table 6.4 – Values of rti and rei for T specimens at yielding 

 

All (rti,rei) values are plotted in Figure 6.3, where also the ideal line along which the points would 

lie if the theoretical resistance function were exact and complete is represented, as well as the line 

characterized by correction factor b, computed according to expression (4.25): b = 0,851. 
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Figure 6.3 – re-rt diagram for T specimens at yielding, with best-fit slope (b=0,851) 

 

Table 6.5 reports the values of the error related to the model for each specimen δi, evaluated by 

means of expression (4.27), also in lognormal terms, i.e. Δi, according to (4.28). 

 

specimen  δ [-] Δ [-] 

1C  0,998 -0,002 

1bisC  0,978 -0,022 

1D  1,161 0,149 

1bisD  1,104 0,099 

2C  1,114 0,108 

2bisC  1,103 0,098 

2D  1,084 0,080 

2bisD  1,008 0,008 

4C  1,010 0,010 

4bisC  0,998 -0,002 

4D  0,898 -0,107 

4Dbis  0,967 -0,033 

5C  0,968 -0,033 

5bisC  0,923 -0,080 

5D  1,013 0,013 

5bisD  0,991 -0,009 

Table 6.5 – Values of δi and Δi for T specimens at yielding 
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The mean value and the variance of the error in lognormal terms can be then defined using 

equations (4.29) and (4.30), respectively. Finally, the coefficient of variation of the error Vδ is 

computed through expression (4.31), which is representative of the scatteredness given by the 

model, defined as (6.3). Therefore, Vδ = 0,071. 

The compatibility of the test population with the model is evaluated considering a valid maximum 

level of scatteredness of 10%, for which Vδ is verified. 

 

The coefficients of variation for the basic variable, i.e. the geometrical corrective factor is Vφ = 

0,082; hence. according to equation (6.6), Vrt = 0,082. 

 

The overall scatteredness, according to (6.7), is Vr = 0,108. 

Vδ, Vrt and Vr are expressed in lognormal terms as Qδ, Qrt and Q, respectively, following equations 

(4.35), (4.36) and (4.37); Qδ and Qrt are then normalized with respect to Q as αδ and αrt, 

correspondingly. 

The mean value of the theoretical function rtm is computed as (6.8), where mφ = 1,016, resulting 

in rtm = 29,10 kN. 

Finally, with kn,d = 3,988, the design value of the resistance function, according to expression 

(4.42), is rd = 16,94 kN. 

 

The characteristic value of the resistance function rk is evaluated as (6.9), with φk = 0,855 (section 

5.3.4), An = 80 mm2 (Figure 5.1) and fyk = 323,2 MPa (section 5.2.3), resulting in rk = 22,11 kN. 

Consequently, following expression (6.10), γ*M0 = 1,305; subsequentially, as γM0 =1,10 and 

according to (6.12), α*0 = 0,84. 

Finally, the corrective factor accounting for the calibration of the partial safety factor and of the 

geometry of the element, as stated in expression (6.15), η*0 = 0,72. 

 

Table 6.6 reports all data and results obtained for the evaluation of the resistance of T specimens 

at yielding.  
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step  parameter value unit 

step 3 correction factor b b 0,851 - 

     
step 4 CoV of the error Vδ Δ 0,017 - 

  sΔ
2 0,005 - 

  Vδ 0,071 - 

     
step 6 CoV of basic variables Vrt mφ 1,016 - 

  sφ 0,083 - 

  Vφ 0,082 - 

     
  Vrt 0,082 - 

     
step 7 design resistance rd Vr 0,108 - 

     
  Qδ 0,071 - 

  Qrt 0,081 - 

  Q 0,108 - 

     
  αδ 0,658 - 

  αrt 0,753 - 

     
  rtm 29,10 kN 

     
  rd 16,94 kN 

     
step 8 characteristic resistance rk φk 0,855 - 

  An 80,00 mm2 

  fyk 323,2 MPa 

     
  rk 22,11 kN 

     
step 9 partial safety factor γ*M γ*M0 1,305 - 

     
step 10 corrective factor η* α*0 0,84 - 

     
  η*0 0,72 - 

Table 6.6 – Data and results for the yielding resistance of T specimens 
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6.4.3 Both directions (L and T) 

In addition to analyzing L and T specimens separately, it is useful to evaluate both directions 

together, in order to provide a value for the corrective coefficient η* that is independent on the 

orientation of the applied load with respect to that of the layer deposition. 

 

The approach followed is that explicated in section 6.2, as it was for the evaluation carried out for 

L and T specimens separately. 

The data provided in Table 6.1 and Table 6.4 must be revised, taking as fy,avg = 349,18 MPa, i.e. 

as the average between the mean value for milled L specimens and that for milled T ones. 

Corrective factor b can then be computed according to expression (4.25), hence b = 0,900; this 

result is reported graphically in Figure 6.4. 

 

 

Figure 6.4 – re-rt diagram for both L and T specimens at yielding, with best-fit slope (b=0,900) 

 

The scatteredness provided by the defined model is quantified as expressed in (4.31), resulting in 

Vδ = 0,088. Instead, that carried by the basic variable is Vrt = 0,093, following equation (6.6), as 

the coefficient of variation for the geometrical corrective factor is  Vφ = 0,093. 

The overall scatteredness is evaluated according to expression (6.7) and is Vr = 0,128. 

 

The compatibility of the data set with the model is assessed setting a maximum value for Vδ of 

10%, hence the population can be considered compatible with the model. 
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Evaluating Qδ, Qrt and Q, respectively, following equations (4.35), (4.36) and (4.37), and 

consequently αδ and αrt, as correspondingly stated in (4.40) and (4.39), and knowing that rtm = 

28,02 kN according to (6.8), where mφ = 1,003, allows for the computation of the design value of 

the resistance function as rd = 16,96 kN, following expression (4.43). 

 

As T specimens present a lower value of the 0.2% proof stress, the value of fyk is set accordingly 

equal to 323,2 MPa, while An = 80 mm2 and φk = 0,855; consequently rk = 22,11 kN as for T 

specimens only. 

 

The partial safety factor computed according to (6.10) is γ*M0 = 1,303; therefore, the calibrating 

factor α*0 is equal to 0,84, evaluated as indicated in expression (6.12). 

Finally, α*0 is combined with the geometrical corrective factor φk according to equation (6.15), 

and the resulting corrective factor is η*0 = 0,72. 

 

All data, computations and results involved in the evaluation of the corrective factor η*0, needed 

in order to express the design resistance at yielding as (6.16) are reported in Table 6.7. 
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step  parameter value unit 

step 3 correction factor b b 0,900 - 

     
step 4 CoV of the error Vδ Δ 0,020 - 

  sΔ
2 0,008 - 

  Vδ 0,088 - 

     
step 6 CoV of basic variables Vrt mφ 1,003 - 

  sφ 0,094 - 

  Vφ 0,093 - 

     
  Vrt 0,093 - 

     
step 7 design resistance rd Vr 0,128 - 

     
  Qδ 0,088 - 

  Qrt 0,093 - 

  Q 0,128 - 

     
  αδ 0,686 - 

  αrt 0,728 - 

     
  rtm 28,02 kN 

     
  rd 16,96 kN 

     
step 8 characteristic resistance rk φk 0,855 - 

  An 80,00 mm2 

  fyk 323,2 MPa 

     
  rk 22,11 kN 

     
step 9 partial safety factor γ*M γ*M0 1,303 - 

     
step 10 corrective factor η* α*0 0,84 - 

     
  η*0 0,72 - 

Table 6.7 – Data and results for the yielding resistance of both L and T specimens 
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6.4.4 Results 

In Table 6.8 below are reported all significant values obtained following the procedure explicated 

in section 6.2, for L and T specimens, both separately and combined. 

 

parameter  direction L direction T directions L and T  units 

b  0,953 0,851 0,900  - 

       
Vδ  0,092 0,071 0,088  - 

Vrt  0,102 0,082 0,093  - 

Vr  0,138 0,108 0,128  - 

       
rd  15,84 16,94 16,96  kN 

rk  22,83 22,11 22,11  kN 

       
γ*M0  1,442 1,305 1,303  - 

    4   
α*0  0,76 0,84 0,84  - 

η*0  0,65 0,72 0,72  - 

Table 6.8 – Summary of results for yielding resistance 

 

Scatteredness Vδ, characterizing the model only, is 7-9%, in general; T specimens, in particular 

resent a smaller variability. 

Regarding basic variable φ, hence in terms of Vrt, T specimens present the smallest value, which 

means that the experimental values for φ carry a lower level of dispersion with respect to their 

mean; on the contrary, L presents the largest value of Vrt. 

 

Regarding the ratio between the traditional value of the partial safety factor γM0 = 1,1 and that 

computed according to (6.10), i.e. α*0, Table 6.8 shows that γM0 is about 76 to 84% of the 

computed one, γ*M0. In other words, the traditional value must be increased of about 19 to 32%. 

 

Recalling equation (6.16): 

 𝑅𝑦𝑑 = 𝜂0
∗ (

1

𝛾𝑀0
𝐴𝑛𝑓𝑦𝑘)   

The main result obtained from the procedure carried out throughout this chapter is, therefore, the 

corrective factor η*0. 

This coefficient, in fact, allows to maintain the standard formulation of the design resistance at 

yielding, and calibrates it in order to account for the peculiarities of the 3D-printed material, in 

particular the roughness of the as-built element, and any other imperfection that could not be 

accounted for in previous evaluations and calibrations, such as those carried out in chapter 5. 
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Focusing on the corrective factor η*0, Table 6.8 shows that the value for L specimens is lower 

than for the other two cases. 

This difference in the final result is partly due the fact that L specimens are characterized by a 

higher value of fyk and, therefore of rk; at the same time, the value of rd is quite smaller than for 

the other cases, and this can be associated to the fact that the overall scatteredness is larger for 

direction L than for T or for the two orientations combined. 

This effect on the evaluation of η*0 is somehow decreased for the two directions combined, even 

though the value of Vr is closer to that for L specimens, due to the fact that rk is evaluated 

according to direction T, hence is smaller than that for L. 

 

As the values of Vδ are dependent on the geometrical irregularities, based on the way the problem 

is defined (section 6.3), as well as, by definition, in Vr, the overall scatteredness can be intended 

as a measure of the influence of the repeatability of the cross-sectional area. 

 

For this reason, moving forward into the development of this technology for the construction 

industry, one of the main objectives is for companies that produce Wire-and-Arc Additively 

Manufactured elements to be able to guarantee a certain level of variability in terms of roughness. 

This way, from a design point-of-view, there can be a generalized approach for the 

characterization of the design resistance by means of a corrective factor η*0. 
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6.5 Ultimate resistance 

As for the resistance at yielding, for the ultimate resistance, the procedure outlined in section 6.2 

is carried out in order to obtain a corrective factor η*2 that calibrates the traditional partial safety 

factor for the resistance of cross-sections in tension to fracture γM2, which, according to [19], is 

equal to 1,25. 

 

Similarly to the case at yielding analyzed in section 6.4, the theoretical resistance function is 

defined as: 

 𝑟𝑡 = 𝜑𝐴𝑛𝑓𝑡  (6.17)  

 where: 

 φ is the geometrical corrective factor, defined as (6.4) 

An is the nominal cross-sectional area referred to the gauge length; hence, referring 

to Figure 5.1, it is equal to 80 mm2 

 ft is the ultimate strength, hence the maximum bearable stress 

 

Consequently, the basic variables for the so-defined resistance function are the geometrical 

corrective factor φ and the ultimate strength ft. 

 

Table 6.9 reports the values of basic variable φ for each of the tested longitudinal specimen, the 

mean value of ft for milled L specimens, the relative values of rti (computed according to 

expression (6.17), where the value of An for each specimen is evaluated as (6.5)), and the values 

of the maximum reaction forces reached by each specimen, which correspond to the experimental 

resistance function rei. 

 

All (rti,rei) values are plotted in Figure 6.5. Said graph reports the ideal line re=rt, as well as the 

line characterized by the best-fit slope b, computed as (4.25): b = 1,007. 
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  theoretical     experimental 

specimen  φ [-] L [mm] σu [MPa] rti [kN]  rei [kN] 

1A  0,889 19,8 564,47 39,76  40,59 

1bisA  0,829 20,0 564,47 37,44  39,84 

1B  0,915 20,0 564,47 41,31  38,46 

1bisB  0,886 20,8 564,47 41,62  39,87 

2A  0,899 20,0 564,47 40,58  40,41 

2bisA  0,879 19,5 564,47 38,72  40,56 

2B  0,948 20,4 564,47 43,67  37,68 

2bisB  0,915 20,0 564,47 41,31  38,65 

4A  1,125 28,2 564,47 71,62  72,12 

4bisA  1,091 22,6 564,47 55,70  68,24 

4B  1,159 22,6 564,47 59,16  56,87 

4bisB  1,032 27,6 564,47 64,34  64,02 

5A  1,080 27,6 564,47 67,29  67,89 

5bisA  1,057 27,6 564,47 65,88  65,90 

5B  1,064 30,0 564,47 72,07  72,87 

5bisB  1,075 25,3 564,47 61,43  61,92 

Table 6.9 – Values of rti and rei for L specimens at the ultimate state 

 

 

Figure 6.5 – re-rt diagram for L specimens at the ultimate state, with best-fit slope (b=1,007) 

 

The definition of the model unavoidably carries some error, which can be computed for each 

specimen according to expression (4.27). Through the evaluation of said error in lognormal terms, 

as expressed in (4.28), and the consequent evaluation of the variance, according to (4.30), the 

coefficient of variation Vδ is computed as reported in equation (4.31). 
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Table 6.10 reports the values of the error related to the model for each specimen δi, also in 

lognormal terms, i.e. Δi. 

The resulting coefficient of variation related to the defined model is Vδ = 0,074. 

 

The validity of the model in terms of compatibility of the test population with said model can be 

checked by limiting the scatteredness of the model at 10%. Since Vδ = 0,074, the compatibility is 

verified. 

 

specimen  δ [-] Δ [-] 

1A  1,014 0,013 

1bisA  1,057 0,055 

1B  0,925 -0,078 

1bisB  0,951 -0,050 

2A  0,989 -0,011 

2bisA  1,040 0,039 

2B  0,857 -0,155 

2bisB  0,929 -0,074 

4A  1,000 0,000 

4bisA  1,217 0,196 

4B  0,955 -0,046 

4bisB  0,988 -0,012 

5A  1,002 0,002 

5bisA  0,993 -0,007 

5B  1,004 0,004 

5bisB  1,001 0,001 

Table 6.10 – Values of δi and Δi for L specimens at the ultimate state 

 

Basic variable φ is also characterized by some scatteredness; its coefficient of variation is 

computed as the ratio between their standard deviation and the mean value, as per definition; 

resulting in Vφ = 0,102. Therefore, according to equation (6.6), Vrt = 0,102. 

 

Finally, the overall scatteredness, related to both the basic variables and the model itself, as 

indicated by expression (6.7): Vr = 0,127. 

 

These coefficients of variation can be expressed in lognormal terms: Qδ, Qrt and Q are evaluated 

according to (4.35), (4.36) and (4.37), respectively. 

Qrt and Qδ can then be normalized with respect to Q, by means of expressions (4.39) and (4.40), 

correspondingly. 
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The mean value of the theoretical function is computed as: 

 𝑟𝑡𝑚 = 𝑚𝜑𝐴𝑛𝑓𝑡 (6.18)  

Therefore, rtm is evaluated as the resistance function of the mean values of the basic variable      , 

namely mφ = 0,990, resulting in rtm = 44,72 kN. 

 

According to Table 4.5, and performing a linear interpolation, for a population of 16 specimens, 

kn,d = 3,988. 

The design value of the resistance function at the ultimate state for L specimens is then computed 

according to equation (4.42): rd = 29,20 kN. 

 

In order to evaluate the partial safety factor γ*M as the ratio between the characteristic and the 

design values of the resistance function, according to (6.10), the characteristic value rk is evaluated 

as: 

 𝑟𝑘 = 𝜑𝑘𝐴𝑛𝑓𝑡𝑘 (6.19)  

 where: 

 φk = 0,855  as computed in section 5.3.4 

 An = 80,00 mm2 according to Figure 5.1 

 fyk = 556,8 MPa  as computed in section 5.2.3 for L specimens 

The computed value for the characteristic resistance function is rk = 38,09 kN. 

Consequently, γ*M2 = 1,304. 

 

As the ultimate tensile resistance can be defined, in general, as (6.20), in order to maintain as 

valid the traditional partial safety factor γM2 = 1,25, a coefficient α* is computed according to 

(6.12), resulting in α*2 = 0,96. 

 𝑅𝑡𝑑 =
1

𝛾𝑀2
𝐴𝑒𝑓𝑓𝑓𝑡𝑘 (6.20)  

 

The geometrical corrective factor φk can be incorporated in corrective factor η*, as expressed in 

(6.15). The resulting corrective factor is η*2 = 0,82. 

This way, the ultimate tensile resistance can be computed as: 

 𝑅𝑡𝑑 = 𝜂2
∗ (

1

𝛾𝑀2
𝐴𝑛𝑓𝑡𝑘) (6.21)  
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All the numerical data and results obtained for the evaluation of the ultimate resistance of L 

specimens, following the procedure described in section 6.2, are reported in Table 6.11 below. 

 

step  parameter value unit 

step 3 correction factor b b 1,007 - 

     
step 4 CoV of the error Vδ Δ -0,008 - 

  sΔ
2 0,006 - 

  Vδ 0,074 - 

     
step 6 CoV of basic variables Vrt mφ 0,990 - 

  sφ 0,101 - 

  Vφ 0,102 - 

     
  Vrt 0,102 - 

     
step 7 design resistance rd Vr 0,127 - 

     
  Qδ 0,074 - 

  Qrt 0,102 - 

  Q 0,126 - 

     
  αδ 0,588 - 

  αrt 0,809 - 

     
  rtm 44,72 kN 

     
  rd 29,20 kN 

     
step 8 characteristic resistance rk φk 0,855 - 

  An 80,00 mm2 

  ftk 556,8 MPa 

     
  rk 38,09 kN 

     
step 9 partial safety factor γ*M γ*M2 1,304 - 

     
step 10 corrective factor η* α*2 0,96 - 

     
  η*2 0,82 - 

Table 6.11 – Data and results for the ultimate resistance of L specimens 
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6.5.1 Transversal direction 

The same approach followed for the longitudinal specimens is adopted for T specimens as well. 

In Table 6.12 are reported the values of the basic variable, i.e. geometrical corrective factor, for 

each tested specimen, the mean value of the ultimate strength for milled T specimens (Table 5.1), 

as well as the values of the theoretical function rti, according to expression (6.17), and the values 

of the maximum force withstood by each specimen during testing, corresponding to experimental 

values rei. 

 

  theoretical     experimental 

specimen  φ [-] L [mm] σu [MPa] rti [kN]  rei [kN] 

1C  0,999 20,1 570,32 45,80  40,10 

1bisC  0,998 20,4 570,32 46,43  39,06 

1D  0,914 20,0 570,32 41,71  40,12 

1bisD  0,905 19,9 570,32 41,07  38,99 

2C  0,906 19,5 570,32 40,28  35,17 

2bisC  0,928 20,0 570,32 42,33  39,43 

2D  0,936 19,6 570,32 41,86  38,91 

2bisD  0,930 20,2 570,32 42,88  39,14 

4C  1,081 22,8 570,32 56,25  55,96 

4bisC  1,072 26,6 570,32 65,08  63,57 

4D  1,141 22,7 570,32 59,08  54,07 

4Dbis  1,107 26,0 570,32 65,67  63,30 

5C  1,100 29,4 570,32 73,80  66,98 

5bisC  1,118 25,4 570,32 64,80  58,31 

5D  1,061 30,5 570,32 73,81  74,17 

5bisD  1,058 27,5 570,32 66,40  60,22 

Table 6.12 – Values of rti and rei for T specimens at the ultimate state 

 

Figure 6.6 presents graphically all (rti,rei) values, as well as the line characterized by the ideal 

slope, i.e. with an inclination of 45° passing through the origin of the axes, and the best-fit line, 

characterized by a correction factor b = 0,934, computed according to expression (4.25). 

 

The model inherently carries an error, and in order to quantify it, the error related to it for each 

specimen needs to be evaluated, according to (4.27), also in lognormal terms, as expressed by 

(4.28). These values are reported in Table 6.13 
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Figure 6.6 – re-rt diagram for T specimens at the ultimate state, with best-fit slope (b=0,934) 

 

specimen  δ [-] Δ [-] 

1C  0,937 -0,065 

1bisC  0,900 -0,105 

1D  1,030 0,029 

1bisD  1,016 0,016 

2C  0,935 -0,068 

2bisC  0,997 -0,003 

2D  0,995 -0,005 

2bisD  0,977 -0,023 

4C  1,065 0,063 

4bisC  1,045 0,044 

4D  0,979 -0,021 

4Dbis  1,032 0,031 

5C  0,971 -0,029 

5bisC  0,963 -0,038 

5D  1,075 0,073 

5bisD  0,971 -0,030 

Table 6.13 – Values of δi and Δi for T specimens at the ultimate state 
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After evaluating the variance of the error in lognormal terms, as expressed in (4.30), the 

scatteredness provided by the model is computed according to equation (4.31), and the coefficient 

of variation is equal to Vδ = 0,049. 

As Vδ is smaller than 10%, the test population can be considered compatible with the model. 

 

The basic variable, namely the geometrical corrective factor, is characterized by a certain 

scatteredness: Vφ = 0,082; consequently, Vrt = 0,082 as well, according to (6.6). 

 

Combining Vδ and Vrt as indicated by (6.7), the overall scatteredness is Vr = 0,095. 

All these coefficients of variation can be expressed in lognormal terms, according to (4.35), (4.36) 

and (4.37), obtaining Qδ, Qrt and Q, correspondingly. The values related to the model and the basic 

variables only are then normalized by means of Q, resulting in αδ and αrt, according to (4.40) and 

(4.39), respectively. 

According to equation (6.8), in which mφ = 1,016, the mean value of the resistance function is rtm 

= 46,35 kN. 

Finally, being kn,d = 3,988 and along with expression (4.42), the design value of the resistance 

function is rd = 31,52 kN. 

 

The characteristic values of the basic variables, as evaluated in chapter 5, are: ftk = 500,4 MPa 

and φk = 0,855, while An = 80,00 mm2, as reported in Table 5.10. Applying equation (6.9), the 

characteristic value of the resistance function is rk = 34,23 kN. 

 

The resulting partial safety factor, computed as expressed by (6.10), is γ*M2 = 1,086, which is 

related to the traditional value γM2, reported in [19], by means of factor α*2 = 1,15, according to 

(6.12). In order to account for the geometrical corrective factor φk as well as α*2 and express the 

ultimate tensile resistance as indicated in expression (6.21), corrective factor η*2 is introduced 

and computed according to equation (6.15), resulting in η*2 = 0,98. 

 

Table 6.14 reports all data and results obtained for the evaluation of the resistance of T specimens 

at the ultimate stress. 
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step  parameter value unit 

step 3 correction factor b b 0,934 - 

     
step 4 CoV of the error Vδ Δ -0,008 - 

  sΔ
2 0,002 - 

  Vδ 0,049 - 

     
step 6 CoV of basic variables Vrt mφ 1,016 - 

  sφ 0,083 - 

  Vφ 0,082 - 

     
  Vrt 0,082 - 

     
step 7 design resistance rd Vr 0,095 - 

     
  Qδ 0,049 - 

  Qrt 0,081 - 

  Q 0,095 - 

     
  αδ 0,517 - 

  αrt 0,856 - 

     
  rtm 46,35 kN 

     
  rd 31,52 kN 

     
step 8 characteristic resistance rk φk 0,855 - 

  An 80,00 mm2 

  ftk 500,4 MPa 

     
  rk 34,23 kN 

     
step 9 partial safety factor γ*M γ*M2 1,086 - 

     
step 10 corrective factor η* α*2 1,15 - 

     
  η*2 0,98 - 

Table 6.14 – Data and results for the ultimate resistance of T specimens 
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6.5.2 Both directions (L and T) 

As for the resistance at yielding, directions L and T are evaluated together, in order to provide a 

value for the corrective coefficient η* that is independent on the orientation of the printed material. 

Again, the procedure outlined in section 6.2 is followed for said evaluation. 

 

The data provided in Table 6.9 and Table 6.12 are reviewed, setting ft,avg = 567,39 MPa, i.e. as 

the average between the mean value for milled longitudinal and transversal. The corrective factor 

b is again computed according to (4.25), resulting in b = 0,970; this result is reported in graphical 

form in Figure 6.7. 

 

 

Figure 6.7 – re-rt diagram for both L and T specimens at the ultimate state, with best-fit slope (b=0,970) 

 

According to expression (4.31), the scatteredness provided by the model is Vδ = 0,070, while that 

carried by the basic variable is Vrt = 0,093. 

Merging these results in accordance with (6.7), the overall scatteredness is Vr = 0,117. 

 

Since the scatteredness of the model is lower than 10%, which is the maximum allowable value 

set for this problem, test population and model are compatible. 

 

Qδ, Qrt and Q are evaluated, following equations (4.35), (4.36) and (4.37) respectively, and αδ and 

αrt are consequentially computed, as correspondingly stated in (4.40) and (4.39). 

Knowing that rtm = 45,53 kN according to (6.8), where mφ = 1,003, the design value of the 

resistance function can be computed as rd = 30,78 kN, following (4.43). 
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As for the yielding resistance, since T specimens present a lower value of the ultimate stress, the 

value of ftk is taken accordingly, equal to 500,4 MPa, while An = 80,00 mm2 and φk = 0,855; 

consequently rk = 34,23 kN as for T specimens only. 

 

The partial safety factor is computed according to (6.10) and is γ*M2 = 1,112; hence, the 

calibrating factor α*2 is equal to 1,12, applying expression (6.12). 

Finally, α*2 is combined with the geometrical corrective factor φk according to equation (6.15), 

and the resulting corrective factor is η*2 = 0,96. 

 

All data, computations and results involved in the evaluation of the corrective factor η*2, 

according to the procedure delineated in section 6.2, needed to express the design tensile ultimate 

resistance as (6.21), are reported in Table 6.15 below. 
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step  parameter value unit 

step 3 correction factor b b 0,970 - 

     
step 4 CoV of the error Vδ Δ -0,008 - 

  sΔ
2 0,005 - 

  Vδ 0,070 - 

     
step 6 CoV of basic variables Vrt mφ 1,003 - 

  sφ 0,094 - 

  Vφ 0,093 - 

     
  Vrt 0,093 - 

     
step 7 design resistance rd Vr 0,117 - 

     
  Qδ 0,070 - 

  Qrt 0,093 - 

  Q 0,117 - 

     
  αδ 0,603 - 

  αrt 0,798 - 

     
  rtm 45,53 kN 

     
  rd 30,78 kN 

     
step 8 characteristic resistance rk φk 0,855 - 

  An 80,00 mm2 

  ftk 500,4 MPa 

     
  rk 34,23 kN 

     
step 9 partial safety factor γ*M γ*M2 1,112 - 

     
step 10 corrective factor η* α*2 1,12 - 

     
  η*2 0,96 - 

Table 6.15 – Data and results for the ultimate resistance of both L and T specimens 
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6.5.3 Results 

Table 6.16 below reports all noteworthy values obtained following the procedure outlined in 

section 6.2, for L and T specimens, both separately and combined. 

 

parameter  direction L direction T directions L and T  units 

b  1,007 0,934 0,970  - 

       
Vδ  0,074 0,049 0,070  - 

Vrt  0,102 0,082 0,093  - 

Vr  0,127 0,095 0,117  - 

       
rd  29,20 31,52 30,78  kN 

rk  38,09 34,23 34,23  kN 

       
γ*M2  1,304 1,086 1,112  - 

       
α*2  0,96 1,15 1,12  - 

η*2  0,82 0,98 0,96  - 

Table 6.16 – Summary of results for ultimate resistance 

 

Generally speaking, from a qualitative point of view, the conclusions drawn for the yielding 

resistance (section 6.4.4) are also valid for the ultimate one, as elaborated hereafter. 

 

The model is characterized by a scatteredness that spans between 5 and 7% over the three cases, 

which is generally lower than for yielding; furthermore, as for the yielding resistance, T 

specimens present the lower level of variability. 

Concerning basic variable φ, namely in terms of Vrt, T specimens present the smallest value, 

which means that the experimental values for the geometrical corrective factor are characterized 

by a smaller variability; on the other hand, as for yielding, L presents the largest value of Vrt. 

 

In terms of α*2, i.e. the ratio between the traditional value of the partial safety factor γM2 = 1,25 

and that computed according to (6.10), from Table 6.16 it is clear that γM0 is about 96% of γ*M2 

for L specimens, while it is about 10-13% larger for T specimens, alone and combined with 

longitudinal ones. In other words, the traditional value must be increased of about 4% for direction 

L, while it should be decreased to about 87-89% in the other two cases. 

 

Recalling expression (6.21): 

 𝑅𝑡𝑑 = 𝜂2
∗ (

1

𝛾𝑀2
𝐴𝑛𝑓𝑡𝑘)  

The key result is, therefore, corrective factor η*2. 
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This coefficient is defined in a way that allows to maintain the general formulation to evaluate 

the design resistance at the ultimate state, while calibrating the traditional values to account for 

the particularities of the WAAM-produced material, namely the roughness of the as-built element 

and any other imperfection that could not be accounted for in previous evaluation and calibrations, 

i.e. those performed in chapter 5, regarding strength and geometry as two independent 

characteristics. 

 

Regarding this, Table 6.16 shows that T specimens, separately as well as together with L ones, 

are characterized by a similar value of η*2, while it is quite smaller for the longitudinal direction 

alone, as for yielding. 

 

Following the same reasoning developed in section 6.4.4, this difference can be associated to two 

factors: first, the fact that L specimens are characterized by a larger value of rk; at the same time, 

they present a smaller value for rd, as the overall scatteredness is larger for direction L than for T 

or for the two orientations combined. 

The factor mainly responsible for this behavior is the scatteredness of the basic variable φ, which 

is a direct measure of the roughness of the WAAM-produced material, since both Vrt and Vδ are 

directly dependent on it. 

 

  



 

83 
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7. Part A – Conclusions 

7.1 Statistical determination of experimental results 

The first portion of part A, namely chapter 5, is focused on the definition of the characteristic 

values of the properties of the material, in particular mechanical and geometrical. 

 

Mechanical properties describe the behavior of the material and its response when subjected to a 

traction test, in terms of elastic behavior (Young’s modulus), performance at yielding (0.01% and 

0.2% proof stresses) and at the ultimate state (ultimate stress and strain). 

Geometrical properties are related to the definition and quantification of the roughness that is 

intrinsic of the 3D-printed material. 

 

In both cases, experimental results have been analyzed accounting for the printing direction: 

parallel (L), orthogonal (T) and inclined of 45° (D) with respect to the orientation of the applied 

external load. 

While for geometrical properties, namely corrective factor φ which relates nominal and effective 

values for the thickness, can be taken as independent on the printing direction, for mechanical 

properties the specimen’s orientation is of paramount importance and demonstrates the anisotropy 

of the WAAM-produced material. 

 

In particular, T specimens carry the lowest characteristic values for all mechanical properties, 

while D specimens behave the best in terms of strength, though L specimens are characterized by 

the highest ductility. These characteristic values are reported in Table 7.1 below. 

 

    direction   

parameter symbol unit  L T D 

Young’s modulus E GPa  135,48 111,88 184,23 

       
0.01% proof stress  σ0.01% MPa  235,66 232,29 255,75 

0.2% proof stress σ0.2% MPa  333,83 323,22 402,85 

       
ultimate stress σu MPa  556,78 500,39 295,89 

ultimate strain εu %  17,62 14,49 14,18 

Table 7.1 – Summary of the characteristic values of key mechanical parameters 
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7.2 Resistance function 

Chapter 6 delves into the definition of the resistance function, both in characteristic and design 

terms, for the assessment of partial safety factors. 

These evaluations are made at yielding and the ultimate state, accounting for L and T specimens, 

both separately and combined together. 

 

In particular, the design value of the resistance function is assessed based on the mean values of 

the basic variables, their variability and the scatteredness related to the definition of the model 

itself; the characteristic value, on the other hand, is simply evaluated by means of the 

characteristic values previously defined. 

 

Table 7.2 shows how the partial safety factor, computed as the ratio of characteristic and design 

value of the resistance function, mainly decreases as the scatteredness associated to the geometry 

decreases, which is evident both in terms of Vδ and Vrt. 

 

For this reason, the main objectives for future studies and for the development of WAAM 

technologies within the construction industry can be: firstly, for the producing companies to be 

able to assure a certain level of variability in terms of roughness of the printed material; then, for 

researchers to be able to assign certain values of the corrective coefficient for partial safety factors 

η* to said given values of the coefficient of variation of geometrical corrective factor φ. 

 

  yielding    ultimate state  

property  L T L+T  L T L+T 

Vδ [%]  9,16 7,13 8,78  7,44 4,92 7,03 

Vφ [%]  10,2 8,16 9,32  10,2 8,16 9,32 

         
rk [kN]  22,83 22,11 22,11  38,09 34,23 34,23 

rd [kN]  15,84 16,94 16,96  29,20 31,52 30,78 

         
γ*M [-]  1,44 1,31 1,30  1,30 1,09 1,11 

γM [-]  1,10 1,10 1,10  1,25 1,25 1,25 

         
α* [-]  0,76 0,84 0,84  0,96 1,15 1,12 

η* [-]  0,65 0,72 0,72  0,82 0,98 0,96 

Table 7.2 – Summary of results in terms of resistance function and partial safety factors 
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PART B: CALIBRATION OF THE STRESS-STRAIN 

BEHAVIOR FOR THE FINITE ELEMENT ANALYSIS OF A 

DIGITAL INPUT MODEL 
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8. Finite Element Analysis 

Structural analysis has become increasingly more complex as designs started presenting more 

elaborate shapes and employing non-standard geometries, which standard analytical formulations 

can hardly solve, if at all. Finite Element Analysis is an extremely helpful tool in this sense, as it 

allows to solve any kind of problems through numerical integration. 

 

8.1 Finite Element Method 

The Finite Element Method is comprised of the following steps: 

1) Discretization: the component is subdivided into smaller elements, connected to each 

other through nodes, and hence a mesh is created. Meshes can be h-refined, by increasing 

the number of elements, which then become smaller and smaller, or p-refined, namely 

each element is determined by higher-order polynomials, eliminating some degrees of 

freedom (static condensation). 

2) Definition of element governing equations: for each element, the governing equations are 

defined with respect to the local coordinate system, relating mechanical properties and 

boundary conditions, by means of the constitutive, compatibility and equilibrium 

equations, hence through the definition of the stiffness matrix via numerical integration. 

3) Assembly of the global governing equations: the elemental governing equations are 

translated into global governing equations, respecting compatibility (consistency in terms 

of nodal displacements) and equilibrium rules (uniformity with regards to nodal forces). 

4) Imposition of boundary conditions: both Dirichlet, regarding initial displacements and 

constraints, and Neumann (concerning applied external forces) boundary conditions are 

applied at the nodes. 

5) Solution: the differential equations describing the type of analysis to be performed (static, 

dynamic, transient, etc.) are solved at this stage. 

6) Post-processing: only displacements and forces are obtained through the solution of 

differential equation; by applying the constitutive, compatibility and equilibrium 

equations, it is possible to recover derived quantities, such as stresses and strains. 
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8.2 FEA – Advantages and limitations 

The Finite Element Method obviously allows for a very wide range of applications, which makes 

it a very valid tool in the definition and study of complex structural elements, such as those that 

can be produced using Wire-and-Arc Additively Manufacturing. 

 

But while exploiting a Finite Element Analysis allows for the study of complex structures and 

elements, which could be hardly achieved through traditional analytical methods, it is important 

to keep in mind the limitations that such analysis carries. 

Firstly, it is based on numerical integration, therefore the solution is not continuous and how the 

element is discretized plays a crucial role in the validity of the model itself. 

Furthermore, other parameters also depend on the designer’s discretion: the behavior of materials, 

the modeling of restraints, the application of external forces, and so on. 
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9. Calibration of stress-strain models of rough specimens 

9.1 Overview 

Two 3D scans of rough specimens were provided: specimen 3A and specimen 4D. These scans 

can be referred to as “Digital Twins” of said specimens, as they report every single geometrical 

feature that is proper of the respective WAAM-produced element. 

 

Specimen 3A is oriented in the longitudinal direction, and is shown in Figure 9.1; while specimen 

4D is transversal, and its geometrical characteristics can be appreciated from Figure 9.2. 

 

 

 

Figure 9.1 – xy and xz views of specimen 3A 

 

 

 

Figure 9.2 – xy and xz views of specimen 4D 

 

Through Digital Image Correlation (DIC), which is an optical method for the measurement of 

strains and displacements through the comparison between digital images corresponding to 

different stages of deformation, the constitutive behavior, i.e. the stress-strain relationship, and 

the response, in terms of force vs displacement, can be obtained. 

 

While the F-u response is unambiguous, stresses and strains are evaluated as expressed by 

equations (9.1) and (9.2), respectively Hence, based on the way they are defined, they are 

dependent on the average geometry and, therefore, on the element’s intrinsic roughness and 

imperfections. 
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 𝜎 =
𝐹

𝐴𝑒𝑓𝑓
 (9.1)  

 𝜀 =
𝛥𝑢

𝐿𝑒𝑓𝑓
 (9.2) 

 

The goal is to calibrate the stress-strain curve, in particular in terms of Young’s modulus E, 

descriptive of the elastic phase, and 0.2% proof stress σ0.2%, representative of the behavior at 

yielding, which are the main parameters that are of interest at a design level. 

 

The provided Digital Twins are imported into FEA software Abaqus, in which material properties 

and boundary conditions are properly defined in order to simulate a pull test. 

Employing a “Static, General” solver, which is an implicit method, inertia and time-dependent 

effects, such as creep and swelling, are neglected, which is a fair assumption for the type of 

analysis that is to be carried; geometrical non-linearity can be taken into account through the 

solver’s settings (NLGeom). 

 

In order to calibrate Young’s modulus E, the approach is the following: in the elastic phase, the 

constitutive law is (9.3), similarly, reaction force F and displacement u are linearly related by 

means of axial stiffness K, as indicated in (9.4). As axial stiffness is defined as (9.5), E and K are 

directly proportional; therefore, deriving the relationship between the specimen’s actual axial 

stiffness Kac and that resulting from the simulation run applying the initially available stress-strain 

relationship Kin, the initial value of E can be properly calibrated. 

 𝜎 = 𝐸𝜀 (9.3)  

 𝐹 = 𝐾𝑢 (9.4) 

 𝐾 =
𝐸𝐴

𝐿
 (9.5) 

 

Regarding 0.2% proof stress σ0.2%, as there is not a linear relationship between its value and the 

non-linear post-yielding behavior, the calibration approach is that of trial-and-error. 
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9.2 Stress-strain model 

Annex C of [19] provides guidelines for the modelling of the behavior of the material in terms of 

the stress-strain relationship. 

This approach is based on two models: Ramberg-Osgood equation (9.6), formulated in 1943 to 

describe the non-linear relationship between stresses and strains up until the yielding point of the 

material [20]; and Rasmussen equation (9.7), which is used to model the material’s behavior 

within the plastic domain. 

 𝜀 =

{
 
 

 
 
𝜎

𝐸
+ 0.002 (

𝜎

𝑓𝑦
)

𝑛

                                                    𝜎 ≤ 𝑓𝑦

0.002 +
𝑓𝑦

𝐸
+
𝜎 − 𝑓𝑦

𝐸𝑦
+ 𝜀𝑢 (

𝜎 − 𝑓𝑦

𝑓𝑢 − 𝑓𝑦
)

𝑚

     𝑓𝑦 < 𝜎 ≤ 𝑓𝑢

 

 

(9.6)   

 

(9.7)  

  

where: 

 
𝑛 =

ln 20

ln (
𝑓𝑦

𝑅𝑝0.01
)

 
(9.8)  

 
𝐸𝑦 =

𝐸

1 + 0.002𝑛
𝐸
𝑓𝑦

 (9.9) 

 𝑚 = 1+ 3.5
𝑓𝑦

𝑓𝑢
 (9.10) 

 fy corresponds to 0.2% proof stress σ0.2% 

 fu corresponds to ultimate stress σu 

 Rp0.01 corresponds to 0.01% proof stress σ0.01% 

 

As thoroughly explained in [21], post-necking behavior cannot be properly described by the 

stress-strain data collected from testing; instead, the hardening behavior that occurs after diffuse 

necking must be defined by means of different models. 

One widely used model, which will be applied here as well, is that defined by Hollomon [21]: it 

is a power-law model relating true stresses σt and true strains εt by means of a strength coefficient 

K1 and a strain hardening exponent n1. This model is described by (9.11). 

 𝜎𝑡 = 𝐾1𝜀𝑡
𝑛1  (9.11)  

 

This model is directly defined in terms of true values and not engineering ones: the latter are 

defined in terms of the initial geometry of the specimen, hence they do not account for changes 
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in the cross-sectional dimensions when large strains occur (Figure 9.3); for this reason, the 

behavior of the material is more accurately described in terms of true values. 

 

As true values represent a more precise characterization of the material’s behavior, those are the 

values to input as material properties in FEA software programs, such as Abaqus. 

True values can be derived from engineering ones as follows: 

 𝜎𝑡 = 𝜎𝑒𝑛𝑔(1 + 𝜀𝑒𝑛𝑔) (9.12)  

 𝜀𝑡 = ln(1 + 𝜀𝑒𝑛𝑔) (9.13) 

 

It is also useful to separate the elastic and plastic parts of the true strain, as, in the definition of 

the plastic behavior in Abaqus, only plastic values (εt,pl) are required. Elastic and plastic values 

are to be computed according to (9.14) and (9.15), respectively. 

 𝜀𝑡,𝑒𝑙 =
𝜎𝑡
𝐸

 (9.14)  

 𝜀𝑡,𝑝𝑙 = 𝜀𝑡 − 𝜀𝑡,𝑒𝑙 (9.15) 

 

 

Figure 9.3 – Qualitative schematization of engineering vs true stress-strain curves [21] 

 

According to Considére criterion (Figure 9.4), the onset of diffuse necking is defined as: 

 𝜎𝑡,𝑛𝑒𝑐𝑘 =
𝑑𝜎𝑡
𝑑𝜀𝑡

|
𝜀𝑡=𝜀𝑡,𝑛𝑒𝑐𝑘

 (9.16)  

Applying the definition of σt, i.e. (9.11), to expression (9.16) above, necking begins at a strain 

corresponding to the strain hardening exponent, as reported below: 

 𝜀𝑡,𝑛𝑒𝑐𝑘 = 𝑛1 (9.17)  
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Figure 9.4 – Considére construction for necking in tension [22] 

 

The value of the strain hardening exponent can be evaluated following the procedure delineated 

in EN ISO 10275:2007 [23]: n1 is computed considering a portion of the stress-strain curve in the 

plastic region of a specimen subjected to uniaxial testing. 

For the specimens analyzed, said plastic region is that in between 2% strain and ultimate strain, 

which corresponds to the maximum stress reached during testing (Figure 9.5). 

According to this Standard, the tensile strain hardening exponent is to be computed as: 

 𝑛1 =
𝑁∑𝑥𝑖𝑦𝑖 − ∑𝑥𝑖 ∑𝑦𝑖

𝑁∑𝑥𝑖
2 − (∑𝑥𝑖)2

 (9.18)  

 where: 

 N is the number of measurements made in the plastic interval (>5) 

 𝑥 = ln 𝜀𝑡,𝑝𝑙 (9.19)  

 𝑦 = ln𝜎𝑡  (9.20) 

 

Regarding strength coefficient K1, according to [24], there is a relationship between the ultimate 

tensile strength UTS, namely σu, and the strain hardening coefficient n1, as indicated in (9.21). 

Therefore, K1 can be computed as reported in equation (9.22). 

 𝑈𝑇𝑆 = 𝐾1 (
𝑛1
𝑒
)
𝑛1

 (9.21)  

 𝐾1 = 𝑈𝑇𝑆 (
𝑛1
𝑒
)
−𝑛1

 (9.22) 
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Figure 9.5 – Range for the determination of strain hardening exponent n1 [23] 

 

Recapitulating, the stress-strain models employed from here onwards are the following: 

 

model phase formulation parameters 

Ramberg-
Osgood 

elastic 
𝜀 =

𝜎

𝐸
+ 0.002(

𝜎

𝜎0.2%
)

𝑛

 𝑛 =
ln20

ln (
𝜎0.2%
𝜎0.01%

)
 

    
Rasmussen plastic 

(pre-
necking) 

𝜀 = 0.002+
𝜎0.2%
𝐸

+
𝜎 − 𝜎0.2%

𝐸𝑦
+ 𝜀𝑢 (

𝜎 − 𝜎0.2%
𝜎𝑢 − 𝜎0.2%

)

𝑚

 𝐸𝑦 =
𝐸

1 + 0.002𝑛
𝐸

𝜎0.2%

 

   𝑚 = 1+ 3.5
𝜎0.2%
𝜎𝑢

 

    
Hollomon post-

necking 
𝜎𝑡 = 𝐾1𝜀𝑡

𝑛1 
𝑛1 =

𝑁∑𝑥𝑖𝑦𝑖 −∑𝑥𝑖 ∑𝑦𝑖
𝑁∑𝑥𝑖

2 − (∑𝑥𝑖)2
 

   
𝐾1 = 𝜎𝑢 (

𝑛1
𝑒
)
−𝑛1

 

Table 9.1 – Stress-strain models and parameters 
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9.3 Specimen 3A 

9.3.1 Characterization of the stress strain model 

The value of Young’s modulus E is extracted from experimental data by means of Ordinary Least 

Square Regression (OLSR).  

Processing the outputs from DIC regarding the effective stress-strain curve, the values of ultimate 

stress σu, as well as ultimate strain εu and strain at failure εf, can be extracted. 

Combining those with the value of E obtained through OLSR, 0.01% and 0.2% proof stresses, 

σ0.01% and σ0.2%, can be evaluated, as shown in Figure 9.6. 

Strain at yielding εy is extracted from the effective stress-strain curve, in correspondence of the 

value of σ0.2%. 

All these mechanical parameters are reported in Table 9.2. 

 

 

Figure 9.6 – Evaluation of 0.01% and 0.2% proof stresses of specimen 3A 
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property symbol  value  unit 

Young’s modulus E  146 174  MPa 

      
0.01% proof stress σ0.01%  336,20  MPa 

0.2% proof stress σ0.2%  380,05  MPa 

ultimate stress σu  599,44  MPa 

      
yielding strain εy  0,765  % 

ultimate strain εu  33,27  % 

strain at failure εf  37,48  % 

Table 9.2 – Mechanical properties of specimen 3A 

 

Applying the models summarized in Table 9.1, the stress-strain model can be defined: all 

characterizing parameters are reported in Table 9.3. The resulting engineering and true stress-

strain curves are plotted in Figure 9.7, next to the experimental ones. 

Furthermore, Figure 9.8 compares true experimental and analytical (i.e. based on the defined 

model) constitutive curves. 

 

model phase  parameter value unit 

Ramberg-Osgood elastic  n 24,43 - 

      
Rasmussen plastic (pre-necking)  Ey 7 380 MPa 

   m 3,22 - 

      
Hollomon post-necking  n1 0,26 - 

   K1 1 104 MPa 

Table 9.3 – Parameters defining the stress-strain model of specimen 3A 

 

  

Figure 9.7 – Empirical and analytical engineering and true stress-strain curves of specimen 3A 

0
100
200
300
400
500
600
700
800
900

0 5 10 15 20 25 30 35 40

σ
[M

P
a]

ε [%]

specimen 3A -

empirical stress-strain diagram

engineering values true values

0
100
200
300
400
500
600
700
800
900

0 5 10 15 20 25 30 35 40

σ
[M

P
a]

ε [%]

specimen 3A -

analytical stress-strain diagram

engineering values true values



 

98 
 

  

Figure 9.8 – Comparison between empirical and analytical true stress-strain curves of specimen 3A 

 

9.3.2 Definition of the Finite Model in software Abaqus 

The first step in the definition of a Finite Model in Abaqus is the characterization of the geometry, 

in this case, as already stated, a Digital Twin of the specimen was provided as a 3D scan; specimen 

3A is shown in Figure 9.1. 

 

Material mechanical properties are defined separately for the elastic and the plastic behaviors. 

The elastic behavior is considered to be isotropic, and Young’s modulus E and Poisson’s ratio ν 

must be set; these input values are reported in Table 9.4. 

Regarding the plastic behavior, for which hardening is set as isotropic, the input values required 

are in terms of yield (true plastic) stress and (true) plastic strain, starting at a stress value 

corresponding to σ0.01%. This is a valid approach thanks to the way Ramberg-Osgood’s model is 

defined; in fact, parameter n makes sure that the interval between the 0.01% and the 0.2% proof 

stresses is properly modeled. 

The true stress-true plastic strain curve is plotted in Figure 9.9, and corresponds to the input values 

set to define the plastic behavior within the software, some of which are also reported numerically 

in Table 9.4. 
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 significant 

steps 

 input values 

phase  E [MPa] ν [-]  σt [MPa] εt,pl [-] 

elastic -  146 173 0,44  - - 

        
plastic 0.01%  - -  337,006 0 

 0.2%  - -  381,800 0,0020 

 necking  - -  777,790 0,2547 

 failure  - -  819,789 0,3127 

Table 9.4 – Main input values in Abaqus for the characterization of material behavior – model 3A 

 

 

 

Figure 9.9 – True stress-true plastic strain curve – model 3A 

 

The element must then be discretized by creating a mesh: first, seeds (nodes) are assigned to the 

part, setting an approximate global size, which in this case is of 2 mm; then, the most suitable 

element type is attributed to the part and the mesh is therefore created. 

For such a complex geometry, the most appropriate element type for its discretization is a C3D10, 

which is a second-order (10-node) tetrahedral element, schematized in Figure 9.10. 

The so-created mesh is comprised of 167703 nodes and 106840 elements. 
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Figure 9.10 – C3D10 Finite Element – undeformed and deformed 

 

The boundary conditions, namely the clamped end and the loaded one, are defined by means of 

multi-point constraints (MPC), in order to refer many elements’ faces to a unique point (Control 

Point), to which the boundary conditions are directly applied. 

 

Before defining boundary conditions, steps must be defined: at the initial step, the element is at 

rest; at step “loading”, characterized by a Tabular Amplitude relating displacements and time in 

a 1-to-1 manner, the element undergoes a displacement that linearly increases with time. 

 

Figure 9.11 displays the specimen at the loading step. More in detail, Figure 9.12 shows the fixed 

end, which is defined by means of an Encastre-type boundary condition; alike, Figure 9.13 depicts 

the loaded end, characterized by a Displacement-type boundary condition, which fixes all 

rotations, as well as y and z displacements.  

 

 

Figure 9.11 – Boundary conditions of model 3A – loading step 
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Figure 9.12 – Fixed-end of model 3A – xy and zy views 

 

        

Figure 9.13 – Loaded-end of model 3A – xy and yz views 
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9.3.3 Results of FEA 

The following reported outcomes only regard forces and displacements up until the maximum 

value of the reaction force Fmax. 

In particular, Figure 9.14 presents the specimen at rest and at the maximum elongation reached 

for Fmax; the maximum values in terms of reaction forces and displacements are all reported in 

Table 9.5. 

 

   

 

Figure 9.14 – Initial and final displacements from Abaqus – model 3A 

 

 umax [mm] Fmax [kN] 

experimental 52,58 56,25 

model 3A 39,34 55,86 

Table 9.5 – Maximum values for F-u – model 3A 

 

The results in terms of reaction force versus displacement (F-u) are plotted in Figure 9.15, 

compared to the experimental results. 
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 Figure 9.15 – F-u diagram – model 3A 

 

9.3.4 Calibration of Young’s modulus E 

The first calibration to be performed regards Young’s modulus E, hence the elastic phase. In this 

regard, Figure 9.16 compares the empirical and analytical results in terms of F-u diagram, 

focusing on the elastic phase, precisely up until u = 1 mm. 

 

  

Figure 9.16 – F-u diagram: elastic phase – model 3A 

 

It is evident from Figure 9.16 how the value of E obtained from OLSR and set in the Abaqus 

model is quite smaller than the actual one.  
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Referring to an interval of values for the displacement that goes approximately from 0,05 mm to 

0,25 mm, by means of linear interpolation, the target axial stiffness can be computed, as reported 

in Table 9.6: Kref = 91530,35 N/mm. 

Regarding the outputs of the finite element analysis, the value of K is assessed for a series of 

points in the F-u diagram, in between u = 0,010 mm and u = 0,218 mm, obtaining an average 

value of K3A = 58973,69 N/mm (Table 9.7). 

 

 u [mm] F [kN] K [N/mm] 

data 0,050822 8,1090  

 0,249521 26,296  

    
Δ 0,198698 18,187  

    
Kref   91530,35 

Table 9.6 – Evaluation of axial stiffness K – experimental (3A) 

 

 u [mm] F [kN] K [N/mm] 

data 0,010000 0,5898 58978,60 

 0,020000 1,1796 58979,00 

 0,035000 2,0643 58979,43 

 0,057500 3,3913 58978,61 

 0,091250 5,3815 58975,78 

 0,141875 8,3663 58969,23 

 0,217813 12,841 58955,16 

    
K3A   58973,69 

Table 9.7 – Evaluation of axial stiffness K – model 3A  

 

As in the elastic phase Young’s modulus E and axial stiffness K are directly proportional, thanks 

to the definition of K itself (9.5), the ratio between reference and model stiffnesses can be applied 

to the value of E for the model in order to calibrate it; namely: 

 𝛼𝐸 =
𝐾𝑟𝑒𝑓

𝐾3𝐴
 (9.23)  

 𝐸𝑐𝑎𝑙1 = 𝛼𝐸𝐸3𝐴 (9.24)  

Therefore, the calibrating factor αE,3A = 1,552; consequently, according to (9.24), the calibrated 

value of Young’s modulus is Ecal1 = 226 870 MPa. The corresponding stress-strain plot is reported 

in Figure 9.17. 
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Figure 9.17 – σ-ε diagram: elastic phase – model 3A-cal1 

 

As the first calibration only concerns the elastic phase, and in particular the elastic modulus, the 

only change in the new input model “3A-cal1” in Abaqus is, indeed, in the definition of E. 

With this new value defining the elastic phase, a new output F-u diagram is obtained, and it is 

reported in Figure 9.18, with a focus on the chosen reference interval for the evaluation of K. 

 

  

Figure 9.18 – F-u diagram: elastic phase – model 3A-cal1 

 

With the same approach followed for model 3A, the resulting value of the axial stiffness for model 

3A-cal1 is Kcal1 = 91528,68 N/mm (Table 9.8). The corresponding value of αE,cal1, according to 

(9.24), would be 1,000; hence model 3A-cal1 is a valid model for the elastic phase. 
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 u [mm] F [kN] K [N/mm] 

data 0,010000 0,9154 91538,70 

 0,020000 1,8308 91539,50 

 0,035000 3,2039 91539,71 

 0,057500 5,2635 91538,61 

 0,091250 8,3525 91534,25 

 0,141875 12,985 91522,82 

 0,217813 19,927 91487,19 

    
Kcal1   91528,68 

Table 9.8 – Evaluation of axial stiffness K – model 3A-cal1  

 

9.3.5 Calibration of 0.2% proof stress σ0.2% 

Other than the elastic phase, another crucial point for the behavior and response of a stainless-

steel structural element is yielding; in regard to this, the focus is shifted, in particular, in the σ0.01%-

σ0.2% interval. 

Recalling Table 9.1, the model that refers to this interval is Ramberg-Osgood’s, characterized by 

parameter n. Here below are reported equations (9.6) and (9.8) defining the model: 

 𝜀 =
𝜎

𝐸
+ 0.002 (

𝜎

𝜎0.2%
)

𝑛

  

 
𝑛 =

ln 20

ln (
𝜎0.2%
𝜎0.01%

)
  

 

Recalling the F-u plot for model 3A-cal1, Figure 9.19 focuses on the yielding phase. It can be 

noticed how the curve follows a path with a wider radius than the one needed to align with the 

experimental trend. In order for the initial curve to be sharper, the value of exponent n should be 

higher, hence, σ0.2% should be smaller, while keeping σ0.01% fixed. 
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 Figure 9.19 – F-u diagram: yielding phase – model 3A-cal1 

 

As a first attempt for the calibration of the value of the 0.2% proof stress, it is assessed based on 

the calibrated value of the Young’s modulus, namely Ecal1 = 226 870 MPa. 

Consequently, according to Figure 9.20, σ0.2%,cal2 = 362,99 MPa, hence reducing the initial value 

of σ0.2% (380,05 MPa) of a factor α0.2% = 0,955, defined as: 

 𝛼0.2% =
𝜎0.2%,𝑐𝑎𝑙2
𝜎0.2%,3𝐴

 (9.25)  

 

 

 Figure 9.20 – Evaluation of 0.2% proof stress according to Ecal1 
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In Table 9.9 are reported the new values of the parameters defining the model. 

Figure 9.21 shows the consequently updated true stress-true plastic strain diagram, whose key 

values are reported in Table 9.10, which lists the input parameters for the corresponding Abaqus 

model. 

 

    values   

model  parameter  3A  3A-cal2 

Ramberg-Osgood  n [-]  24,43  39,07 

       
Rasmussen  Ey [MPa]  7 380  4 550 

  m [-]  3,22  3,12 

       
Hollomon  n1 [-]  0,26  0,26 

  K1 [MPa]  1 104  1 104 

Table 9.9 – Parameters defining the stress-strain model – 3A vs 3A-cal2 

 

 

Figure 9.21 – True stress-true plastic strain curve – model 3A-cal2 

 

 significant 

steps 

 input values 

phase  E [MPa] ν [-]  σt [MPa] εt,pl [-] 

elastic -  226 870 0,44  - - 

        
plastic 0.01%  - -  337,006 0 

 0.2%  - -  364,298 0,0020 

 necking  - -  777,790 0,2566 

 failure  - -  819,789 0,3147 

Table 9.10 – Main input values in Abaqus for the characterization of material behavior – model 3A-cal2 
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Figure 9.22 reports the F-u plot obtained from model 3A-cal2, focusing on the yielding phase: 

while in the very first part, the new model provides slightly lower values than the experimental 

curve in terms of reaction forces, the curve quickly overestimates the target one. 

Therefore, the value of σ0.2% should be lower further; assuming a value of α0.2,cal2 to be applied to 

σ0.2%,cal2 equal to 0,98, σ0.2%,cal3 = 355,73 MPa, evaluated as: 

 𝜎0.2%,𝑐𝑎𝑙3 = 𝛼0.2,𝑐𝑎𝑙2𝜎0.2%,𝑐𝑎𝑙2 (9.26)  

 

 

 Figure 9.22 – F-u diagram: yielding phase – model 3A-cal2 

 

Model 3A-cal3 is characterized by a new set of parameters for the definition of the stress-strain 

behavior; the values for said parameters are reported in Table 9.11. 

Figure 9.23 plots the true stress-true plastic strain diagram, corresponding to the characterization 

of the plastic behavior of the material; the input values set in software Abaqus for this latest model 

are reported in Table 9.12. 

 

    values   

model  parameter  3A-cal2  3A-cal3 

Ramberg-Osgood  n [-]  39,07  53,05 

       
Rasmussen  Ey [MPa]  4 550  3 300 

  m [-]  3,12  3,08 

       
Hollomon  n1 [-]  0,26  0,26 

  K1 [MPa]  1 104  1 104 

Table 9.11 – Parameters defining the stress-strain model – 3A-cal2 vs 3A-cal3 
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 Figure 9.23 – True stress-true plastic strain curve – model 3A-cal3 

 

 significant 

steps 

 input values 

phase  E [MPa] ν [-]  σt [MPa] εt,pl [-] 

elastic -  226 870 0,44  - - 

        
plastic 0.01%  - -  337,006 0 

 0.2%  - -  357,000 0,0020 

 necking  - -  777,790 0,2566 

 failure  - -  819,789 0,3147 

Table 9.12 – Main input values in Abaqus for the characterization of material behavior – model 3A-cal3 

 

The output F-u diagram is reported in Figure 9.24, with a focus on the yielding phase: the curve 

slightly underestimates the reaction force at yielding of about 1 kN, which is a valid result, being 

on the safe side, and then proceeds to tend to the target curve. Therefore, model 3A-cal3 is 

considered to be the calibrated model for specimen 3A.  
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 Figure 9.24 – F-u diagram: yielding phase – model 3A-cal3 

 

9.3.6 Results’ overview 

The overall calibration of the stress-strain model for rough longitudinal specimen 3A is indicated 

in Table 9.13 below, in terms of calibrating factors αE and α0.2. 

Regarding the specimen’s response, Figure 9.25 provides an overview of the F-u plot from a 

graphical point-of-view, while Figure 9.26 offers a close-up on the elastic and yielding phases, 

focus of the performed calibrations. 

Table 9.14 reports the maximum values in terms of displacement and reaction force: it is evident 

how the model’s calibration also impacted the maximum response reached during the software 

simulation. 

 

  values [MPa]    

property  initial  calibrated  α 

Young’s modulus E  146 174  226 870  1,552 

0.2% proof stress σ0.2%  380,05  355,73  0,936 

Table 9.13 – Calibrating factors α – specimen 3A 

 

 umax [mm] Fmax [kN] 

initial model 39,34 55,86 

calibrated model 47,42 55,73 

experimental 52,58 56,25 

Table 9.14 – Maximum values for F-u – calibrated model for specimen 3A 
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Figure 9.25 – F-u diagram – calibrated model for specimen 3A 

 

  

Figure 9.26 – F-u diagram: elastic and yielding phases – calibrated model for specimen 3A 
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9.4 Specimen 4D 

9.4.1 Characterization of the stress-strain model 

As for specimen 3A, the values of the mechanical parameters have been obtained from a Digital 

Image Correlation (DIC) analysis; in particular, Young’s modulus E is extracted by means of 

Ordinary Least-Square Regression (OLSR), and consequently, 0.01% and 0.2% proof stresses 

can be evaluated as shown in Figure 9.27. 

All significant mechanical properties are reported in Table 9.15. 

 

 

 Figure 9.27 – Evaluation of 0.01% and 0.2% proof stresses of specimen 4D 

 

property symbol  value  unit 

Young’s modulus E  162 997  MPa 

      
0.01% proof stress σ0.01%  228,20  MPa 

0.2% proof stress σ0.2%  293.39  MPa 

ultimate stress σu  555,19  MPa 

      
yielding strain εy  0,356  % 

ultimate strain εu  24,10  % 

strain at failure εf  25,06  % 

Table 9.15 – Mechanical properties of specimen 4D 

 

  

0

50

100

150

200

250

300

350

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

σ
[M

P
a]

ε [%]

specimen 4D - evaluation of σ0.01% and σ0.2%

empirical 0.01 0.2



 

114 
 

Table 9.16 below reports all the parameters defining the stress-strain model for specimen 4D, 

according to the models listed in Table 9.1. 

It can be noticed how, in this particular case, the value of the true strain at necking is 26%, which 

is actually larger than the true strain at failure εf, which is equal to 22,36%, according to (9.13). 

The model is still valid, and this peculiarity can simply be associated to an oddly premature failure 

of the specimen in question. 

 

model phase  parameter value unit 

Ramberg-Osgood elastic  n 11,92 - 

      
Rasmussen plastic (pre-necking)  Ey 11 440 MPa 

   m 2,85 - 

      
Hollomon post-necking  n1 0,26 - 

   K1 1 022 MPa 

Table 9.16 – Parameters defining the stress-strain model of specimen 4D 

 

Figure 9.28 reports experimental engineering and true stress-strain diagrams, together with the 

analytical ones, namely those resulting applying the models as defined in Table 9.16. 

Furthermore, empirical and analytical constitutive curves in terms of true values are plotted in 

Figure 9.29. 

 

  

Figure 9.28 – Empirical and analytical engineering and true stress-strain curves of specimen 4D 
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Figure 9.29 – Comparison between empirical and analytical true stress-strain curves of specimen 4D 

 

9.4.2 Definition of the Finite Model in software Abaqus 

A 3D scan of specimen 4D was provided, hence standing as a Digital Twin of the specimen itself; 

for this reason, the geometry within the software was simply determined through the importation 

of the 3D scan. Figure 9.2 shows a view from the top, as well as a side view, of specimen 4D. 

 

As already explained for specimen 3A, within the software, the material is defined in terms of 

elastic behavior, by setting Young’s modulus E and Poisson’s ratio ν, and in terms of plastic 

behavior, by providing a set of yield stress-plastic strain values, starting from the 0.01% proof 

stress, which represents the transition between elastic and yielding phases. 

These input values are partly reported in Table 9.17, and, regarding the plastic phase, entirely 

represented in Figure 9.30. 

 

 significant 

steps 

 input values 

phase  E [MPa] ν [-]  σt [MPa] εt,pl [-] 

elastic -  162 997 0,33  - - 

        
plastic 0.01%  - -  228,538 0 

 0.2%  - -  294,509 0,0020 

 failure  - -  703,799 0,2329 

Table 9.17 – Main input values in Abaqus for the characterization of material behavior – model 4D 
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Figure 9.30 – True stress-true plastic strain curve – model 4D 

  

The element is discretized by setting an approximate global size for the seeds of 2 mm, and 

employing C3D10-type elements (Figure 9.10), which are the most suitable choice for such a 

complex geometry. The resulting mesh presents 217437 nodes and 143559 elements. 

 

As for specimen 3A, a “loading” step is created, characterized by a Tabular Amplitude relating 

displacements and time at a 1-to-1 rate. At this step, a displacement that linearly increases over 

time is applied in direction x. 

In order to define boundary conditions, all the faces on each end are related by means of a multi-

point constraint (MPC) and referred to a Control Point, to which boundary conditions are then 

assigned to. 

 

The specimen is presented in Figure 9.31 at the loading step, while Figure 9.32 and Figure 9.33 

focus, respectively, on the fixed and loaded ends. In particular, the fixed end is defined as an 

Encastre-type boundary, while the loaded end as a Displacement-type boundary, for which all 

displacements but that in the x directions are fixed. 
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Figure 9.31 – Boundary conditions of model 4D – loading step 

 

  

Figure 9.32 – Fixed-end of model 4D – xy and zy views 

 

       

Figure 9.33 – Loaded-end of model 4D – xy and yz views 
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9.4.3 Results of FEA 

Figure 9.34 shows the specimen at the initial stage, i.e. at rest, and at the elongation umax reached 

at maximum reaction force Fmax; these maximum values are reported in Table 9.18, in comparison 

with the target (experimental) ones. The resulting force-displacement diagram is plotted in Figure 

9.35, again, compared to the empirical one. 

 

 

 

Figure 9.34 – Initial and final displacements from Abaqus – model 4D 

 

 umax [mm] Fmax [kN] 

experimental 39,85 54,07 

model 4D 19,92 56,22 

Table 9.18 – Maximum values for F-u – model 4D 

 

 

 Figure 9.35 – F-u diagram – model 4D 
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9.4.4 Calibration of Young’s modulus E 

In order to calibrate the elastic phase, the focus must be on the value of Young’s modulus E. 

Figure 9.36 compares analytical and experimental results in terms of force-displacement 

response, up to u = 0,8 mm, hence focusing on the elastic phase. 

 

  

Figure 9.36 – F-u diagram: elastic phase – model 4D 

 

Focusing on an interval that goes approximately from u = 0,05 mm to u = 0,25 mm, the target 

value of the axial stiffness is computed through linear interpolation, as reported in Table 9.19. 

The reference value for K is, therefore, Kref = 88563,13 N/mm. 

 

The value of the axial stiffness for the model is assessed on average on a series of F-u values, in 

between u = 0,010 mm and u = 0,218 mm. 

These values are listed in Table 9.20, resulting in a value of K for the model equal to K4D = 

69151,37 N/mm. 

 

 u [mm] F [kN] K [N/mm] 

data 0,050369 5,5311  

 0,229277 21,376  

    
Δ 0,178908 15,845  

    
Kref   88563,13 

Table 9.19 – Evaluation of axial stiffness K – experimental (4D) 
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 u [mm] F [kN] K [N/mm] 

data 0,010000 0,6911 69109,20 

 0,020000 1,3824 69118,50 

 0,035000 2,4196 69132,00 

 0,057500 3,9762 69150,96 

 0,091250 6,3124 69176,44 

 0,141875 9,8190 69209,02 

 0,217813 15,065 69163,46 

    
K4D   69151,37 

Table 9.20 – Evaluation of axial stiffness K – model 4D  

 

Exploiting equation (9.23) for K4D, the calibrating factor is αE = 1,281; consequently, according 

to (9.24), Ecal1 = 208 753 N/mm. In terms of true stress-strain relationship in the plastic phase, the 

calibrated curve is plotted in Figure 9.37. 

 

 

Figure 9.37 – σ-ε diagram: elastic phase – model 4D-cal1 

 

The new calibrated model “4D-cal1” only presents changes in the elastic modulus, hence that is 

the only input value that changes with respect to Table 9.17. The resulting F-u diagram is plotted 

in Figure 9.38, focusing on the elastic phase and, in particular, in the reference interval chosen 

for the evaluation of axial stiffness K. 
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Figure 9.38 – F-u diagram: elastic phase – model 4D-cal1 

 

Following the same approach for the evaluation of the axial stiffness used for model 4D, the 

resulting value is Kcal1 = 88557,50 N/mm (Table 9.21); exploiting equation (9.24), the resulting 

value is αE,cal1 = 1,000. Therefore, model 4D-cal1 fairly approximates the elastic phase. 

 

 u [mm] F [kN] K [N/mm] 

data 0,010000 0,8851 88509,30 

 0,020000 1,7704 88521,50 

 0,035000 3,0989 88538,57 

 0,057500 5,0924 88562,61 

 0,091250 8,0843 88594,85 

 0,141875 12,573 88618,15 

    
Kcal1   88557,50 

Table 9.21 – Evaluation of axial stiffness K – model 4D-cal1  
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9.4.5 Calibration of 0.2% proof stress σ0.2% 

Following the same approach as for specimen 3A, the yielding phase is remodeled by calibrating 

the value of the 0.2% proof stress and maintaining that of the 0.01% proof stress. Figure 9.39 

focuses on the yielding phase in the F-u diagram for model 4D-cal1. 

 

 

 Figure 9.39 – F-u diagram: yielding phase – model 4D-cal1 

 

The value of σ0.2%,cal2 for model 4D-cal2 is evaluated from Figure 9.40, assuming the calibrated 

value of the Young’s modulus, namely Ecal1 = 208 753 N/mm. 

As a result, σ0.2%,cal2 = 292,25 MPa, which, if normalized with respect to the initial value σ0.2%,4D 

= 293,39 MPa, sets the calibration factor at α0.2 = 0,996. 

 

As the calibrated value is very similar to the initial one, so will be the results; hence, a new model 

“4D-cal3” can be introduced, assuming to further calibrate the value of σ0.2%,cal2 by means of a 

factor α0.2,cal2 = 0,90, resulting in σ0.2%,cal3 = 263,03 MPa. 

The set of parameters corresponding to model 4D-cal3 are reported in Table 9.22, which also 

displays the similarities between models 4D-cal1 and 4D-cal2, especially in terms of n, 

highlighting why it makes sense to assume a new model right away. 
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 Figure 9.40 – Evaluation of 0.2% proof stress according to Ecal1 

 

    values     

model  parameter  4D-cal1  4D-cal2  4D-cal3 

Ramberg-

Osgood 
 

n [-]  11,92  12,11  21,09 

         
Rasmussen  Ey [MPa]  11 620  11 410  6 060 

  m [-]  2,85  2,84  2,66 

         
Hollomon  n1 [-]  0,26  0,26  0,26 

  K1 [MPa]  1 022  1 022  1 022 

Table 9.22 – Parameters defining the stress-strain model – 4D-cal1 vs 4D-cal2 vs 4D-cal3 

 

Table 9.23 reports the main input values describing the material’s behavior for model 4D-cal3; 

and, in particular, the true stress-true plastic strain model of the plastic phase is plotted in Figure 

9.41. 

 

 significant 

steps 

 input values 

phase  E [MPa] ν [-]  σt [MPa] εt,pl [-] 

elastic -  208 753 0,33  - - 

        
plastic 0.01%  - -  228,468 0 

 0.2%  - -  263,886 0,0020 

 failure  - -  717,561 0,2531 

Table 9.23 – Main input values in Abaqus for the characterization of material behavior – model 4D-cal3 

 

0

50

100

150

200

250

300

350

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

σ
[M

P
a]

ε [%]

model 3A-cal2 - evaluation of σ0.2%

empirical 0,2



 

124 
 

 

 Figure 9.41– True stress-true plastic strain curve – model 4D-cal3 

 

The output force-displacement diagram, with a focus on the yielding phase, is reported in Figure 

9.42. As can be seen, while in the very first part the model behaves very similarly to the reference 

one, it soon quickly diverges from the target trend. 

For this reason, the value of the 0.2% proof stress is further decreased of a factor 0,95, hence, for 

model 4D-cal4, σ0.2%,cal4 = 249,88 MPa. 

 

 

 Figure 9.42 – F-u diagram: yielding phase – model 4D-cal3 
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The parameters defining the new stress-strain model 4D-cal4 are reported in Table 9.24, where 

they are compared to those of the previous model, i.e. 4D-cal3. 

The resulting plastic behavior in terms of true stresses and true plastic strains is shown in Figure 

9.43, and the key values, which are put inside software Abaqus to characterize the new material, 

are reported in Table 9.25. 

 

    values   

model  parameter  3A-cal3  3A-cal4 

Ramberg-Osgood  n [-]  21,09  33,01 

       
Rasmussen  Ey [MPa]  6 060  3 720 

  m [-]  2,66  2,58 

       
Hollomon  n1 [-]  0,26  0,26 

  K1 [MPa]  1 022  1 022 

Table 9.24 – Parameters defining the stress-strain model – 4D-cal3 vs 4D-cal4 

 

 

 Figure 9.43 – True stress-true plastic strain curve – model 4D-cal4 

 

 significant 

steps 

 input values 

phase  E [MPa] ν [-]  σt [MPa] εt,pl [-] 

elastic -  208 753 0,33  - - 

        
plastic 0.01%  - -  228,468 0 

 0.2%  - -  250,676 0,0020 

 failure  - -  736,325 0,2788 

Table 9.25 – Main input values in Abaqus for the characterization of material behavior – model 4D-cal4 
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The force-displacement diagram resulting from the analysis run in software Abaqus, focused on 

the yielding phase, is reported in Figure 9.44. In the initial part, the force is about 2 kN lower than 

the empirical value; being it on the safe side, and given the fact that the diagram quickly 

approaches the target trend, it is a valid result. 

 

 

 Figure 9.44 – F-u diagram: yielding phase – model 4D-cal4 

 

9.4.6 Results’ overview 

Table 9.26 recapitulates the calibrating factors applied to the model for specimen 4D. 

The overall response in terms of force vs displacement is shown in Figure 9.45, while Figure 9.46 

focuses the attention, in particular, on the elastic and yielding phases, which were the core of the 

calibrations performed. 

Finally, Table 9.27 lists and compares the maximum values in terms of reaction force and 

displacement reached during the actual test and in the simulations. 

 

  values [MPa]    

property  initial  calibrated  α 

Young’s modulus E  162 997  208 753  1,281 

0.2% proof stress σ0.2%  293,39  249,88  0,852 

Table 9.26 – Calibrating factors α – specimen 4D 
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 Figure 9.45 – F-u diagram – calibrated model for specimen 4D 

 

  

Figure 9.46 – F-u diagram: elastic and yielding phases – calibrated model for specimen 4D 

 

 umax [mm] Fmax [kN] 

initial model 19,92 56,22 

calibrated model 34,52 56,00 

experimental 39,85 54,07 

Table 9.27 – Maximum values for F-u – calibrated model for specimen 4D 
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10. Application of stress-strain models from milled 

specimens to rough Digital Twins 

10.1 Overview 

In Chapter 9, the stress-strain model applied to the respective Digital Twin was evaluated from 

the effective values proper of the same rough specimen. This approach aimed at the refinement 

of the mechanical behavior, removing to a certain extent the influence of the geometry on the 

values themselves. The response, though, is still affected by the geometry, in the sense that the 

“pure” stress-strain relationship is applied to a rough configuration. 

 

Since, as just stated, the influence of the roughness is already accounted for in the Digital Twin’s 

geometry, a different approach could be applying a stress-strain model evaluated from milled 

specimens, which can already be considered as the actual constitutive behavior of the WAAM-

produced material, to the Digital Twin. 

 

In particular, both for the longitudinal and the transversal direction, 5 milled specimens have been 

analyzed in order to produce an averaged “milled” stress-strain model; said specimens are the 

same considered in section 5.2 for the evaluation of the characteristic values of key mechanical 

properties. 
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10.2 Longitudinal direction 

10.2.1 Stress-strain model 

Following the same approach outlined in section 9.2, the stress-strain behavior can be modeled 

according to three different methods over three different phases. Specifically: 

 Ramberg-Osgood’s model characterizes the elastic phase, and in particular the trend 

between σ0.01% and σ0.2%; 

 Rasmussen’s model defines the plastic behavior up until necking; 

 Hollomon’s model best describes the hardening caused by diffused necking.  

The models and their characterizing parameters are summarized in Table 9.1, which is reported 

here below. 

 

model phase formulation parameters 

Ramberg-
Osgood 

elastic 
𝜀 =

𝜎

𝐸
+ 0.002(

𝜎

𝜎0.2%
)

𝑛

 𝑛 =
ln20

ln (
𝜎0.2%
𝜎0.01%

)
 

    
Rasmussen plastic 

(pre-
necking) 

𝜀 = 0.002+
𝜎0.2%
𝐸

+
𝜎 − 𝜎0.2%

𝐸𝑦
+ 𝜀𝑢 (

𝜎 − 𝜎0.2%
𝜎𝑢 − 𝜎0.2%

)

𝑚

 𝐸𝑦 =
𝐸

1 + 0.002𝑛
𝐸

𝜎0.2%

 

   𝑚 = 1+ 3.5
𝜎0.2%
𝜎𝑢

 

    
Hollomon post-

necking 
𝜎𝑡 = 𝐾1𝜀𝑡

𝑛1 
𝑛1 =

𝑁∑𝑥𝑖𝑦𝑖 −∑𝑥𝑖 ∑𝑦𝑖
𝑁∑𝑥𝑖

2 − (∑𝑥𝑖)2
 

   
𝐾1 = 𝜎𝑢 (

𝑛1
𝑒
)
−𝑛1

 

 

Table 10.1 lists the main mechanical properties for 5 milled L specimens. Said properties, as for 

specimens 3A and 4D in chapter 9, have been extracted from Digital Image Correlation analyses, 

and, regarding Young’s modulus E, by means of Ordinary Least Square Regression. 

Their mean values characterize the material defining “model L”. 

 

Parameters n, Ey, m, n1 and K1 are then evaluated, as indicated in Table 9.1, for each one of the 

milled longitudinal specimens. Table 10.2 lists said values, their mean m (which define model L), 

standard deviation s and coefficient of variation V. 

 

The stress-strain diagram describing model L is plotted in Figure 10.1, where it is compared to 

the effective constitutive relationships of the milled longitudinal specimens it was derived from, 

as well as that of specimen 3A. 
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   specimens     

property unit  1 bis L 2 L 3 L 4 L 5 bis L 

Young’s modulus E MPa  135 540 130 490 147 310 137 940 141 420 

        
0.01% proof stress σ0.01% MPa  211,02 252,50 310,82 229,18 260,65 

0.2% proof stress σ0.2% MPa  342,91 353,50 356,87 325,67 322,71 

ultimate stress σu MPa  549,10 549,07 580,28 592,34 551,56 

        
yielding strain εy %  0,505 0,447 0,455 0,481 0,458 

ultimate strain εu %  24,24 20,33 29,72 30,78 27,57 

strain at failure εf %  25,54 22,06 34,07 34,50 29,83 

Table 10.1 – Mechanical properties of milled L specimens 

 

  
Ramberg-

Osgood 
 

Rasmussen   Hollomon 
 

  n [-]  Ey [MPa] m [-]  n1 [-] K1 [MPa] 

1 bis L  6,17  23 060 3,19  0,23 969 

2 L  8,90  17 231 3,25  0,21 940 

3 L  21,68  7 794 3,15  0,24 1 039 

4 L  8,53  16 776 2,92  0,27 1 105 

5 bis L  14,03  10 638 3,05  0,24 988 

         
m  11,86  15 100 3,11  0,24 1 008 

         
s  5,54  5 367 0,115  0,018 58,17 

V  0,467  0,355 0,037  0,077 0,058 

Table 10.2 – Parameters defining the averaged stress-strain model for L milled specimens 

 

   

Figure 10.1 – Comparison between empirical and analytical true stress-strain curves of model L 
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10.2.2 Definition of the Finite Model in software Abaqus 

The geometry, mesh and boundary conditions are the same as those defined in section 9.3.2, since 

the physical model remains unaffected by the new model, which only concerns the material’s 

behavior. 

Table 10.3 reports the main values set within the software for the characterization of the material. 

Furthermore, Figure 10.2 shows the entire plastic behavior in terms of true stress and true plastic 

strain, from σ0.01% until failure, compared to model 3A (calibrated), which can be considered as a 

reference trend to aim to. 

This graph shows that the overall plastic behavior has a similar trend to the reference one; the 

main discrepancies are found in an underestimated strength in the yielding phase, an overvalued 

one right after, and quite lower ductility and maximum strength.  

 

 significant 

steps 

 input values 

phase  E [MPa] ν [-]  σt [MPa] εt,pl [-] 

elastic -  138 450  0,44  - - 

        
plastic 0.01%  - -  253,310 0 

 0.2%  - -  341,849 0,0020 

 necking  - -  715,667 0,2348 

 failure  - -  726,961 0,2509 

Table 10.3 – Main input values in Abaqus for the characterization of material behavior – model L 

 

 

Figure 10.2 – True stress-true plastic strain curve – model L 
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10.2.3 Results of FEA 

Figure 10.3 reports the response resulting from the simulation run in software Abaqus, in terms 

of reaction force vs displacement. This plot is visually compared to that of specimen 3A, and, in 

order to generalize, to those of a set of longitudinal rough specimens. The F-u diagram of 

specimen 3A can qualitatively be considered a fair average of the response of the rough specimens 

tested. 

 

The considerations made on the true stress-true plastic strain plot in section 10.2.2 find some 

correspondence in terms of F-u: as expected, at yielding, the behavior is initially underestimated, 

and surpasses the target one later on; the maximum value of the force is lower than the empirical 

one, and so is the respective displacement, as reported numerically in Table 10.4. 

The evaluation of the plastic phase will remain only qualitative in this study, while the elastic 

phase is more thoroughly analyzed in section 10.2.4. 

 

 

 Figure 10.3 – F-u diagram – model L 

 

  umax [mm] Fmax [kN] 

rough specimens (average)  46,27 52,87 

3A - experimental  52,58 56,25 

model L  31,22 52,24 

Table 10.4 – Maximum values for F-u – model L 
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10.2.4 Analysis of the elastic phase 

Focusing on the elastic phase, Figure 10.4 plots the F-u diagram resulting from the simulation of 

model L up until u = 0,6 mm, compared to the reference response (3A-experimental) and a set of 

responses of rough longitudinal specimens. In order to better evaluate the axial stiffness, a further 

close-up is offered for the interval in between u = 0,05 mm and u = 0,25 mm, only in contrast 

with specimen 3A. 

 

  

Figure 10.4 – F-u diagram: elastic phase – model L 

 

It is clear how the actual axial stiffness Kref of specimen 3A is quite larger than the one obtained 

from the model. In particular, recalling Table 9.6, the value of Kref is 91530,35 N/mm. 

The axial stiffness characterizing the response of model L is evaluated on average over a set of 

(u,F) values, in between u = 0,010 mm and u = 0,218 mm, computing each value of K according 

to equation (9.4), i.e. as: 

 𝐾 =
𝐹

𝑢
 (10.1)  

 

Therefore, model L is characterized by an axial stiffness KL = 55893,99 N/mm, as indicated in 

Table 10.5. The calibrating factor for the axial stiffness, which will be applied to the Young’s 

modulus of model L-cal, is computed according to expression (9.23), resulting in αE,L = 1,638; 

hence, the calibrated value of E applied to model L-cal is Ecal = 226 869 MPa. 

Figure 10.5 reports the corresponding stress-strain plot. 
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 u [mm] F [kN] K [N/mm] 

data 0,010000 0,5590 55898,80 

 0,020000 1,1180 55899,50 

 0,035000 1,9565 55899,43 

 0,057500 3,2142 55898,78 

 0,091250 5,1005 55896,11 

 0,141875 7,9294 55889,83 

 0,217813 12,170 55875,45 

    
KL   55893,99 

Table 10.5 – Evaluation of axial stiffness K – model L  

 

 

Figure 10.5 – σ-ε diagram: elastic phase – model L-cal 

 

Changing the input value of E in software Abaqus from model L, while maintaining the same 

plastic phase, model L-cal is defined within the simulation. After running the static analysis, the 

outputs in terms of reaction force vs displacement, for the elastic phase, as reported in Figure 

10.6, with emphasis on the chosen reference interval for the evaluation of K. 

 

In order to check whether the calibrated axial stiffness correctly models the target one, it is again 

computed on average, for displacements in the reference interval 0,010-0,218 mm, as reported in 

Table 10.6. The resulting value is KL,cal = 91519,19 N/mm; normalizing the reference value Kref 

with respect to KL,cal, αE,L-cal = 1,000, hence the calibration is reasonable. 
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Figure 10.6 – F-u diagram: elastic phase – model L-cal 

 

 u [mm] F [kN] K [N/mm] 

data 0,010000 0,9154 91538,30 

 0,020000 1,8308 91539,00 

 0,035000 3,2039 91539,43 

 0,057500 5,2634 91538,09 

 0,091250 8,3524 91533,48 

 0,141875 12,984 91517,18 

 0,217813 19,914 91428,89 

    
KL,cal   91519,19 

Table 10.6 – Evaluation of axial stiffness K – model L-cal  
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10.3 Transversal direction 

10.3.1 Stress-strain model 

The stress-strain behavior is, again, described by Ramberg-Osgood’s, Rasmussen’s and 

Hollomon’s models, for the elastic, plastic (pre-necking) and post-necking behavior respectively. 

Each of these models is characterized by parameters, as indicated in Table 9.1. 

 

The main mechanical properties of 5 milled transversal specimens are reports in Table 10.7, which 

correspond to those analyzed in section 5.2. “model T” is characterized by the corresponding 

mean values. 

 

The parameters describing the stress-strain model are evaluated for each machined T specimen, 

and they are reported in Table 10.8, together with their mean values, descriptive of model T, their 

standard deviations and coefficients of variation. 

 

The resulting stress-strain behavior is plotted in Figure 10.7, together with that of the milled 

specimens it was derived from, and the constitutive relationship of specimen 4D. 

 

   specimens     

property unit  1 T 2 bis T 3 T 4 T 4 bis T 

Young’s modulus E MPa  116 700 116 450 109 640 112 270 111 990 

        
0.01% proof stress σ0.01% MPa  240,17 318,25 258,68 224,16 212,68 

0.2% proof stress σ0.2% MPa  367,22 362,14 372,49 358,66 329,65 

ultimate stress σu MPa  517,42 558,41 592,57 600,64 582,54 

        
yielding strain εy %  0,948 0,479 0,563 0,528 0,511 

ultimate strain εu %  18,51 30,05 22,63 21,44 25,77 

strain at failure εf %  21,11 33,18 25,94 22,12 28,56 

Table 10.7 – Mechanical properties of milled T specimens 
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Ramberg-

Osgood 
 

Rasmussen   Hollomon 
 

  n [-]  Ey [MPa] m [-]  n1 [-] K1 [MPa] 

1 T  7,06  21 279 3,48  0,20 872 

1 bis T  23,19  7 318 3,27  0,15 862 

3 T  8,22  18 785 3,20  0,20 999 

4 T  6,37  22 498 3,09  0,19 996 

4 bis T  6,84  19 840 2,98  0,23 1 028 

         
m  10,33  17 940 3,20  0,19 951 

         
s  6,46  5 460 0,171  0,026 69,73 

V  0,625  0,304 0,053  0,136 0,073 

Table 10.8 – Parameters defining the averaged stress-strain model for T milled specimens 

 

   

Figure 10.7 – Comparison between empirical and analytical true stress-strain curves of model T 
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10.3.2 Definition of the Finite Model in software Abaqus 

Every characteristic concerning the model, but those referring to the definition of the behavior of 

the material, are not affected by the newly defined model; therefore, the geometry, the boundary 

conditions and the discretization defined in section 9.4.2 remain unvaried. 

In Table 10.9 are reported the main input values set inside the software for the characterization of 

the material behavior for model T. 

 

Figure 10.8 shows the plot corresponding to the input values for the plastic phase, in terms of true 

stresses vs true plastic strains, as well as that for model 4D (calibrated), which can be taken as a 

reference. 

This graph displays a behavior for model T that is largely overestimating the target one, 

particularly in terms of yielding strength, namely σ0.2%. 

 

 significant 

steps 

 input values 

phase  E [MPa] ν [-]  σt [MPa] εt,pl [-] 

elastic -  113 410  0,33  - - 

        
plastic 0.01%  - -  251,355 0 

 0.2%  - -  359,878 0,0020 

 necking  - -  693,655 0,1839 

 failure  - -  726,961 0,2509 

Table 10.9 – Main input values in Abaqus for the characterization of material behavior – model T 

 

 

Figure 10.8 – True stress-true plastic strain curve – model T 
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10.3.3 Results of FEA 

The considerations made, in section 10.3.2, about the plastic phase in terms of true stress-true 

plastic strain find association with the response in terms of reaction force vs displacement, as can 

be appreciated from Figure 10.9. 

The assessment of the plastic behavior will only be qualitative in this study, while the elastic 

phase will be delved into more in depth in section 10.3.4. 

 

In Figure 10.9 are also reported the F-u diagrams for specimen 4D and for a set of transversal 

rough specimens; as a first qualitative approximation, specimen 4D can be considered a fair 

representation of the average behavior of transversal rough specimens. 

In Table 10.10, numerical results in terms of maximum reaction force, and related displacements, 

are reported, in comparison with the average behavior of rough specimens and that of specimen 

4D, which is the reference one. 

 

 

 Figure 10.9 – F-u diagram – model T 

 

  umax [mm] Fmax [kN] 

rough specimens (average)  34,07 50,47 

4D - experimental  39,85 54,07 

model T  13,82 58,66 

Table 10.10 – Maximum values for F-u – model T 
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10.3.4 Analysis of the elastic phase 

In Figure 10.10 is reported the F-u response in the elastic phase, for model L, reference solution 

3A and a set of rough specimens, as well as a close-up on interval of displacements 0,05-0,25 mm 

for the evaluation of axial stiffness K. 

 

  

Figure 10.10 – F-u diagram: elastic phase – model T 

 

It is evident that the reference axial stiffness is larger than the one obtained for model T, therefore 

it needs to be calibrated. In particular, recalling Table 9.19, Kref = 88563,13 N/mm; the axial 

stiffness for model T assessed on average in the interval u = 0,010 to u = 0,218 mm, and its 

computation is reported in Table 10.12: KT = 48122,99 N/mm. 

 

 u [mm] F [kN] K [N/mm] 

data 0,010000 0,4808 48084,80 

 0,020000 0,9618 48091,40 

 0,035000 1,6835 48100,57 

 0,057500 2,7665 48113,74 

 0,091250 4,3920 48131,51 

 0,141875 6,8320 48154,93 

 0,217813 10,495 48183,99 

    
KT   48122,99 

Table 10.11 – Evaluation of axial stiffness K – model T 
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Computing the calibrating factor for the elastic phase according to expression (9.23), αE,T = 1,840. 

New “model T-cal” is, therefore, defined by a new value of Young’s modulus that is, exploiting 

(9.24), Ecal = 208 714 MPa. The corresponding true stress-strain diagram is plotted in Figure 

10.11. 

 

 

Figure 10.11 – σ-ε diagram: elastic phase – model T-cal 

 

Model T-cal is developed in software Abaqus from the previous model (T), described in Table 

10.9, only by modifying the value of E, as the plastic phase only very slightly varies due to Ey. 

The result of the simulation in terms of F-u response in the elastic phase is plotted in Figure 10.12, 

also accentuating the reference interval for the evaluation of axial stiffness K. 

 

The validity of the calibrated model (T-cal) is, again, done by means of the reevaluation of axial 

stiffness K from the model, as reported in Table 10.12. The value obtained is KT,cal =  88524,63 

N/mm; the ratio between Kref and this value is αE,T-cal = 1,000, therefore model T-cal can be 

considered a valid representation of the elastic behavior. 
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Figure 10.12 – F-u diagram: elastic phase – model T-cal 

 

 u [mm] F [kN] K [N/mm] 

data 0,010000 0,8849 88492,80 

 0,020000 1,7701 88505,00 

 0,035000 3,0983 88522,00 

 0,057500 5,0914 88546,09 

 0,091250 8,0828 88578,85 

 0,141875 12,573 88617,44 

 0,217813 19,257 88410,24 

    
KT,cal   88524,63 

Table 10.12 – Evaluation of axial stiffness K – model T-cal  
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11. Application of stress-strain models from rough 

specimens to Digital Input Models 

11.1 Overview 

In Chapter 10, the stress-strain model was evaluated from milled specimens, hence not dependent 

on the irregular geometry, and applied to the Digital Twins of rough specimens. 

Following the opposite approach, in this chapter, the stress-strain model is that obtained from the 

Digital Image Correlation analysis of the two reference rough specimens (3A and 4D), and it is 

applied to Digital Input Models (DIM), namely models whose geometry is regular (Figure 11.1). 

 

According to this approach, the influence of the roughness is directly accounted for within the 

characterization of the material’s behavior, while the geometry does not carry any irregularities; 

specifically, the thickness of each Digital Input Model will be equal to the effective one of the 

respective rough specimen.  

 

 

 

Figure 11.1 – xy and xz views of general Digital Input Model 
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11.2 Model 3A 

11.2.1 Definition of the Finite Model in software Abaqus 

Firstly, the geometry is defined as shown in Figure 11.1; specifically, the thickness of the model 

is set equal to the effective one of specimen 3A, namely t = 3,4 mm. 

The behavior of the material corresponds to model 3A, whose parameters characterizing the 

model are reported in Table 9.3, and its main input values are listed in Table 9.4. 

 

Since the geometry is significantly different than those analyzed up until now, the discretization 

and the application of boundary conditions must be redefined. 

First, the approximate global size for seeds (nodes) is set at 2 mm. The type of element selected 

for this geometry is a C3D8, which is an 8-node linear brick element (Figure 11.2). This is a fair 

choice for such a simple geometry, especially because linear elements are related to a much lower 

computational cost than quadratic elements and are less sensitive to distortion. 

The so-defined mesh is comprised of 5379 nodes and 3308 elements. 

 

   

Figure 11.2 – C3D8 Finite Element – undeformed and deformed 

 

For this regular geometry, there is not the need to define constraints, as the faces at each extremity 

as defined as a single feature. Therefore, as shown in Figure 11.3, the face at the left-end side is 

defined as an Encastre-type boundary condition at the initial step and propagated into the loading 

step, characterized by a Tabular Amplitude relating displacements and time as 1-to-1, while that 

at the right-end side is defined as a Displacement-type boundary condition, for which all 

displacement but that in direction x are fixed at the initial stage and set in the loading step 

according to the defined amplitude. 
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Figure 11.3 – Boundary conditions of model 3A-DIM – loading step 

 

11.2.2 Results of FEA 

The response in terms of reaction force vs displacement resulting from “model 3A-DIM” is 

plotted in Figure 11.4, in comparison with the response of specimen 3A as obtained 

experimentally. 

 

 

 Figure 11.4 – F-u diagram – model 3A-DIM 

 

It is very evident from this plot how the new model very poorly estimates the reaction force that 

the specimen actually develops, resulting in values of F in the plastic phase that are from about 

10 to over 15 kN less than the reference ones, as reported in Table 11.1. 

The analysis of this behavior is left to future studies, while the elastic phase will be investigated 

more in depth in section 11.2.3. 

 

  umax [mm] Fmax [kN] 

experimental  52,58 56,25 

model 3A-DIM  42,96 40,80 

Table 11.1 – Maximum values for F-u – model 3A-DIM 
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11.2.3 Analysis of the elastic phase 

Figure 11.5 reports the F-u response from model 3A-DIM, focusing on the elastic phase, 

compared to the reference one obtained experimentally for specimen 3A; it also offer a close-up 

on a chosen reference interval for the evaluation of axial stiffness K, namely from u = 0,05 mm 

till u = 0,25 mm. 

It is clear that model 3A-DIM also largely underestimates the performance in the elastic phase. 

 

  

Figure 11.5 – F-u diagram: elastic phase – model 3A-DIM 

 

Recalling Table 9.6, the estimated axial stiffness for specimen 3A from the experimental F-u plot 

is Kref = 91530,35 N/mm. The axial stiffness characterizing model 3A-DIM is evaluated over a 

set of (u,F) values as the average of the resulting values of K, computed according to (10.1); the 

assessment is reported in Table 11.2. 

The resulting value is K3A-DIM = 47973,23 N/mm; consequentially, αE,3A-DIM = 1,908. 

 

 u [mm] F [kN] K [N/mm] 

data 0,010000 0,4799 47993,50 

 0,020000 0,9598 47990,65 

 0,035000 1,6795 47986,57 

 0,057500 2,7589 47980,17 

 0,091250 4,3773 47970,63 

 0,141875 6,8038 47956,37 

 0,217813 10,441 47934,70 

    
K3A-DIM   47973,23 

Table 11.2 – Evaluation of axial stiffness K – model 3A-DIM 
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The elastic behavior of calibrated model “3A-DIM-cal” is, therefore, defined by Young’s 

modulus Ecal = 278 892 MPa; the corresponding true stress-strain diagram is plotted in Figure 

11.6. 

 

 

 Figure 11.6 – σ-ε diagram: elastic phase – model 3A-DIM-cal 

 

Figure 11.7 plots the elastic phase of the F-u response obtained running model 3A-DIM-cal. 

As reported in Table 11.3, the axial stiffness for this model is K3A-DIM-cal = 91542,45 N/mm; the 

ratio between Kref and this value is αE,3A-DIM,cal = 1,000, therefore model 3A-DIM-cal can be 

considered a valid representation of the elastic behavior. 

 

  

Figure 11.7 – F-u diagram: elastic phase – model 3A-DIM-cal 
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 u [mm] F [kN] K [N/mm] 

data 0,010000 0,9157 91568,90 

 0,020000 1,8313 91563,50 

 0,035000 3,2044 91555,43 

 0,057500 5,2638 91543,48 

 0,091250 8,3517 91525,26 

 0,141875 12,981 91498,15 

    
K3A-DIM,cal   91542,45 

Table 11.3 – Evaluation of axial stiffness K – model 3A-DIM--cal  
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11.3 Model 4D 

11.3.1 Definition of the Finite Model in software Abaqus 

The geometry, as for the Digital Input Model for specimen 3A, is based off Figure 11.1, with a 

thickness of 4,29 mm, which is the value of the effective thickness of specimen 4D.  

The material’s behavior is that described by model 4D: the parameters defining the model are 

found in Table 9.16, while the main input values describing elastic and plastic phases are 

summarized in Table 9.17. 

 

As for model the Digital Input Model of specimen 3A, model 4D-DIM is discretized setting an 

approximate global size for seeds of 2 mm and using C3D8-type elements. The resulting mesh 

includes 5343 nodes and 3284 elements. 

Boundary conditions are defined as for model 3A-DIM, applied at the extreme faces, as more 

thoroughly described in section 11.2.1 and depicted in Figure 11.3. 

 

11.3.2 Results of FEA 

Figure 11.8 shows and compares the response of the specimen in terms of reaction force versus 

displacement, both that obtained model 4D-DIM as well as that acquired from the actual pull test 

performed on specimen 4D. 

 

 

 Figure 11.8 – F-u diagram – model 4D-DIM 
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From the plot, it is evident how the response in the plastic phase is underestimated of about 3 to 

7 kN, while the level of ductility is fairly assessed, as can be seen more in detail in Table 11.4 

As for model 3D-DIM, the study and evaluation of the plastic behavior is passed onto future 

studies on the matter, while section 11.3.3 hereafter will cover the elastic phase more in detail. 

 

  umax [mm] Fmax [kN] 

experimental  39,85 54,07 

model 4D-DIM  38,28 47,69 

Table 11.4 – Maximum values for F-u – model 4D-DIM 

 

11.3.3 Analysis of the elastic phase 

Focusing on the elastic response obtained from the simulation of model 4D-DIM, Figure 11.9 

shows the F-u plot up until u = 0,5 mm, while concentrating in the u = 0,05-0,25 mm interval for 

the evaluation of K. 

 

  

Figure 11.9 – F-u diagram: elastic phase – model 4D-DIM 

 

The reference value for the axial stiffness is Kref = 88563,13 N/mm, according to Table 9.19. The 

value of K for model 4D-DIM is evaluated in Table 11.5 and amounts to K4D-DIM = 67304,36 

N/mm. This discrepancy can be translated in terms of input values in the model, namely Young’s 

modulus E, which needs to be increased of a coefficient αE,4D-DIM = 1,316, which corresponds to 

the ratio between the reference and 4D-DIM value of axial stiffness K. 
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 u [mm] F [kN] K [N/mm] 

data 0,010000 0,6733 67329,40 

 0,020000 1,3465 67326,00 

 0,035000 2,3562 67321,14 

 0,057500 3,8705 67313,74 

 0,091250 6,1414 67302,58 

 0,141875 9,5462 67285,92 

 0,217813 14,648 67251,73 

    
K4D-DIM   67304,36 

Table 11.5 – Evaluation of axial stiffness K – model 4D-DIM 

 

A new model, named 4D-DIM-cal, can be introduced by setting the calibrated value of E as the 

input value for the definition of the elastic behavior of the material: said calibrated value, Ecal, is 

equal to 214 481 MPa. The new elastic model is plotted, in terms of stress-strain, in Figure 11.10. 

The input values defining the model in software Abaqus regarding the plastic phase remain almost 

unvaried and, while having been properly updated within the model, are not the focus of this 

analysis. 

 

 

Figure 11.10 – σ-ε diagram: elastic phase – model 4d-DIM-cal 

 

The resulting F-u diagram, up until a displacement of 0,5 mm, is plotted in Figure 11.11, partly 

focusing on the reference interval used for the estimation of axial stiffness K, reported in Table 

11.6. 
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The assessed value of the axial stiffness for model 4D-DIM-cal is K4D-DIM-cal = 88574,54 N/mm; 

normalizing Kref by this value, αE,4D-DIM,cal = 1,000, therefore this model is a valid estimation of 

the elastic behavior. 

 

  

Figure 11.11 – F-u diagram: elastic phase – model 4D-DIM-cal 

 

 u [mm] F [kN] K [N/mm] 

data 0,010000 0,8860 88596,00 

 0,020000 1,7718 88591,50 

 0,035000 3,1005 88585,14 

 0,057500 5,0931 88575,30 

 0,091250 8,0812 88560,77 

 0,141875 12,561 88538,50 

    
K3A-DIM,cal   88574,54 

Table 11.6 – Evaluation of axial stiffness K – model 3A-DIM--cal  
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12. Part B – Conclusions 

Part B of this study is focused on the analysis and evaluation of stress-strain models and on how 

geometrical irregularities influence the material’s performance. This has been done for two rough 

specimens for which the Digital Twin was available, namely longitudinal specimen 3A and 

transversal specimen 4D. 

 

Three different approaches have been followed: 

 Materials WAAM-3A and WAAM-4D, defined by stress-strain models obtained from 

the effective constitutive behavior of the respective specimen, applied to the 

corresponding Digital Twin (DT); the roughness is accounted for both in the geometry 

and the material’s behavior; 

 Materials WAAM-L and WAAM-4D, defined combining stress-strain relationships from 

a set of milled specimens with the same orientation, applied to the respective Digital 

Twin; the influence of geometrical imperfections is only carried by the geometry; 

 Materials WAAM-3A and WAAM-4D applied to Digital Input Models (DIM) 

characterized by the effective thickness of the corresponding specimen; the geometry is 

regular, hence the effects of the roughness are conveyed in the stress-strain models. 

 

Figure 12.1 and Figure 12.2 offer an overview of the F-u responses from these three approaches 

compared to the empirical response, for specimen 3A and 4D respectively. 

 

The main similarity found between the two graphs is an underestimation of the overall response 

when applying the rough stress-strain model to the Digital Input Model, more accentuated for 

longitudinal specimen 3A than for transversal one 4D. 

On the other hand, for specimen 3A there is not much difference between the application of the 

milled stress-strain model and that of the rough one; this discrepancy is far more prominent for 

specimen 4D, and, in particular, they both largely overestimate the performance in terms of 

strength, while reaching very low values of displacement. 
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 Figure 12.1 – F-u diagram – comparison of approaches for specimen 3A 

 

  

 Figure 12.2 – F-u diagram – comparison of approaches for specimen 4D 
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Figure 12.3 and Figure 12.4 shift the focus on the elastic phase alone, which is the behavior 

analyzed more in depth in this study. 

The most interesting outcome is that for all models, for both specimens, the axial stiffness is 

significantly underestimated with respect to the actual one evaluated experimentally. 

In particular, for specimen 3A, the value of K from the models is about 52-64% the target value; 

for specimen 4D, while both models with material WAAM-4D are 76-78% the reference value, 

the axial stiffness from model L corresponds to only 54% of Kref. 

 

 

 Figure 12.3 – F-u diagram: elastic phase – comparison of approaches for specimen 3A 

 

 

 Figure 12.4 – F-u diagram: elastic phase – comparison of approaches for specimen 4D 
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13. Summary of work and findings 

The study presented in this dissertation is focused on the analysis of the behavior of Wire-and-

Arc Manufactured stainless-steel, form a design point-of-view, in order to offer some initial 

guidelines for the application of this material to the construction industry. 

The main challenges related to this type of material are: its intrinsic geometrical imperfections, 

as the produced elements present a rough surface, due to the printing process itself, as well as its 

anisotropy, namely the dependency of mechanical properties on the relative orientation between 

the load application and the printing direction. 

 

The report has been divided into two parts: Part A and Part B. 

 

Part A focuses on a first, more general level of design, namely it revolves around the definition 

of characteristic values of geometrical and mechanical properties, and the calibration of existing 

partial safety factors, useful for a preliminary design. 

These evaluations are done by means of the procedures outlined in Annex D of EN1990:2002, 

“Design assisted by testing”; it allows for the determination of design and characteristic values 

both of single properties and of the resistance function. 

From the statistical interpretation of mechanical properties, as also underlined in previous studies 

developed on the matter, results underline that the transversal direction (loading applied 

orthogonally with respect to the printing direction) is characterized by the smallest values, both 

in terms of strains as well as stresses, while the diagonal direction (inclined of 45°) returns the 

best overall performance, even though longitudinal specimens (for which loading and printing 

directions are parallel) present a slightly higher ductility. 

In the definition of the resistance function, a number of assumptions are made, in particular in 

order to focus all uncertainties on the geometrical irregularities. Thanks to this approach, partial 

safety factors can be directly related to the influence of the repeatability of roughness among a 

statistical population. Specifically, when the variability related to the geometrical features 

decreases, so does the value of the partial safety factor, as the design resistance reaches higher 

values. 

For this reason, the main objective, in future studies as well as in the development of WAAM 

techniques within the construction industry, is for manufacturers to be able to guarantee a certain 

level of variability for the roughness and, consequentially, for researchers to link different levels 

of said scatteredness to specific values for the partial safety factors. 
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Part B aims at a deeper level of understanding of the material, in order to allow to carry out Finite 

Element Analyses on Digital Input Models that return realistic responses of the element and the 

material. 

In detail, three different approaches are undertaken in order to understand the effects of 

geometrical imperfections on the material’s behavior and performance. 

The first approach involves the application of a model for the material assessed starting from the 

effective stress-strain relationship obtained from a rough specimen to the geometry of the rough 

specimen itself. This is the less accurate approach, as geometrical imperfections are accounted 

for both within the material’s behavior and the geometry. 

For this reason, the other two approaches either attribute said effects to the geometry or the 

material behavior. In particular, the second approach maintains the rough geometry, while the 

stress-strain model is assessed from a set of milled specimens; on the contrary, in the third 

approach, the rough material behavior is applied to a regular geometry, characterized by the 

effective dimensions of the respective rough specimen. 

The outcomes of these analyses have been examined especially in terms of elastic behavior: for 

every approach, the resulting axial stiffness is far smaller than the actual one obtained from 

physical tests and, therefore, needs to be properly calibrated. 

Regarding the plastic phase, there is not a general trend, but the fact that the milled material 

applied to the rough specimen returns a quite underestimated response. Any further evaluations 

on the overall response are left to future studies.  
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