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Abstract 

 

The use of the computer has become an essential part in the work environment of companies 

across a wide range of areas of expertise. The increase in computational power throughout the 

years led to faster analysis with increased quality, enabled the transfer of information between 

the different stakeholders in an easier and intelligible manner while also allowing the use of 

computational learning techniques which are applied to the vast amount of data gathered 

during the last decades, leading to significant developments in different areas such as 

publicity, economics, medicine, robotics, just to name a few. 

 

Despite the fast growth of this digitalization trend observed in other areas, Civil Engineering 

is just now starting to implement more advanced techniques that may be someday considered 

a reliable alternative to the classic approaches.  

The design process is currently based upon empirical knowledge, advanced analytical 

methods, experimental tests and numerical simulations, used as the basis for the design of 

different structural elements, and which despite being of fairly easy implementation constitute 

time consuming processes. 

 

This work explores the potential of applying machine learning techniques for the design of 

steel connections and the prediction of their corresponding failure modes, without the need to 

compute the expressions proposed by EN1993-1-8, by using different learning algorithm in 

order to find the one that best fits the problem.  

 

The procedure included in the European standard EN1993-1-8 for the design of welded steel 

connections and the equations that return the resistance of the different components of these 

connections are presented as well as the main characteristics of the various considered 

learning algorithms, the different metrics used to evaluate the quality of the created models. 

 

An overall view of the workflow used to create both the dataset and the different models is 

also included 

 

Finally, an analysis of the obtained results for both the classification of the conditioning 

component and the regression of the resistant bending moment is presented. 
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Resumo  

 

O uso do computador tornou-se uma parte essencial no ambiente de trabalho de empresas que 

atuam nas mais diversas áreas. O aumento da capacidade computacional ao longo do tempo 

levou a análises mais rápidas e de melhor qualidade, à transmissão de informação entre os 

vários intervenientes de uma forma mais fácil e clara, permitindo ainda a utilização de 

técnicas de aprendizagem automática aplicadas à grande quantidade de dados gerados nas 

últimas décadas, que possibilitaram avanços significativos em áreas tão distintas como a 

publicidade, economia, medicina, robótica entre outros. 

 

Apesar do rápido crescimento desta tendência de digitalização verificada noutras áreas, a 

Engenharia Civil começa apenas agora a implementar técnicas mais avançadas que possam 

eventualmente servir de alternativa às abordagens clássicas de projeto e execução, onde os 

procedimentos de dimensionamento são atualmente baseados na experiência, em métodos 

analíticos avançados, ensaios experimentais e simulações numéricas, que servem de base ao 

dimensionamento dos diferentes elementos estruturais, e que apesar de serem de fácil 

implementação, constituem em certos casos processos demorados. 

 

No trabalho aqui desenvolvido, explora-se o potencial de aplicação da aprendizagem 

automática ao processo de dimensionamento de ligações e a possibilidade de previsão do 

diferentes modos de falha sem a necessidade de calcular as expressões fornecidas pela 

EN1993-1-8, recorrendo-se para tal a diferentes abordagens de forma a permitir encontrar 

aquela que melhor se adapta ao problema. 

 

É feita uma apresentação do procedimento incluído na norma Europeia EN1993-1-8 para o 

dimensionamento de ligações soldadas e das respetivas equações destinadas à determinação 

da resistência das diferentes componentes são apresentadas. São ainda descritas as principais 

características dos diferentes algoritmos de aprendizagem e as principais medidas usadas para 

a avaliação da qualidade dos modelos criados. 

 

É igualmente incluída uma perspetiva geral do procedimento usado para criar não só a base de 

dados mas também os diferentes modelos. 

 

Por último é realizada uma análise dos resultados obtidos para os dois tipos de problemas 

considerados, o problema de classificação da componente condicionante e o problema de 

regressão do momento fletor resistente. 
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1 INTRODUCTION 

1.1 Motivation 

 

The use of steel elements as a structural solution for buildings, intended for a wide range of 

purposes, has become a usual option for structural engineering practitioners worldwide. This 

can be seen as a result of the different advantages that steel can offer, such as its reduced 

production costs when compared to other construction materials, the speed of the construction 

process which enables globally more economical solutions, the high resistance of steel, 

leading to lighter and slender structural elements and thus to more aesthetically appealing 

solutions, the combination of steel with other materials such as concrete, leading to composite 

solutions which make use of the best mechanical characteristics of each material. 

 

The design of steel structures leads, invariably, to the design of the respective joints, 

regardless of their configuration (welded or bolted connections).  Nowadays, the design of 

steel joints constitutes a fairly simple process, owing to the introduction of the computer as an 

essential part of the process of structural design among practitioners. However, despite the 

exponential increase in computational power witnessed throughout the last few years and the 

accompanying evolution of steel design software with an analytical based approach or by 

means of the Finite Element Method (FEM), the steel connection design process still 

constitutes a time consuming task, one that is painstakingly repeated despite the existing 

similarities between the elements to be connected and the forces involved, leading to steel 

connections with similar geometrical configurations not only within the same project but also 

across different projects. The design of steel connections is therefore a process for which there 

is a large amount of previously existing and available data within organizations such as a 

structural engineering practitioner, data that is generated and validated numerous times 

following older engineering projects and that most of the times is not reused as a basis for the 

design of new steel joints. Thus, this design process presents itself as a possible candidate for 

the application of machine learning techniques that could potentially lead to a more 

expeditious procedure, leading to lower time consumptions during the steel connection design 

process throughout the different stages of a project, contributing for the reduction of the 

associated costs. 

 

1.2 Contributions 

 

The construction of an exhaustive database of unreinforced welded beam to column 

connections is a crucial contribution for the main objective of this work. This database is 

comprised of different pairs of standard commercial profiles, and in particular those used in 

Europe such as IPE, HEA and HEB, or profiles based upon the combination of these, and 
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their respective dimensional variations usually measured. Once obtained, the complete 

database can then be split into training and testing sets, the former used to build the models by 

training a learning algorithm and the latter to evaluate and validate the said model. 

 

1.3 Objectives 

 

The main objective of this thesis is the application of different learning algorithms to data in 

order to solve two different problems. The first consists in building models that allow the 

prediction of the conditioning component of the steel connections, in what is known as a 

classification problem, while the second is the prediction of the corresponding design resistant 

bending moment by solving a regression task. 

 

1.4 Thesis Organization 

 

This document is divided into six chapters. 

 

The first chapter contains a brief introduction in which some of the advantages for the use of 

steel as a construction material are laid out. Moreover, the mainstream approaches followed 

for the design of steel connections within a practitioner’s environment are also presented. 

 

The procedure followed by the European standard EN 1993-1-8, for the design of welded 

beam to column steel connections, known as the Component Method, is presented in detail 

throughout Chapter 2. 

 

Chapter 3 begins with a short presentation of Artificial Intelligence (AI) in general and 

Machine Learning (ML) in particular. The general aspects, which are transversal to different 

algorithms, are also presented, including the different types of learning in which these 

algorithms are inserted, the different types of tasks, as well as the metrics usually used to 

evaluate an algorithm’s performance. Chapter 3 ends with the presentation of the basic 

concepts underpinning the most relevant algorithms. 

 

The definition of the problem being investigated, the proposed approach as well as the 

procedure followed to obtain the dataset are presented along Chapter 4, while the obtained 

results, for both the classification and regression tasks are presented and discussed throughout 

Chapter 5. 

 

Chapter 6 contains the resulting conclusions as well as future developments that may be 

pursued based upon the current work. 
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2 DESIGN OF WELDED BEAM TO COLUMN CONNECTIONS 

 

2.1 Introduction 

 

The design of steel connections implies their characterization in terms of resistance, stiffness 

and ductility. This can be achieved by means of experimental tests, advanced numerical 

analyse using the FEM and/or by analytical expressions. 

 

Taking into account the considerable number of variables involved, the need to reduce the 

costs and optimize the time consumed during the design process of the different structural 

elements, expeditious methods, which enable the designer to engage in a process where 

iterations can be developed in a quick and simple manner, should be adopted. Thus, the 

analytical approach presents itself as the most practical one for the design if steel connections 

in the engineering practice. 

 

The component method is the analytical method of choice for the design of steel connections 

with a wide range of geometrical configurations, intended to connect steel elements with 

different cross-sections subjected to various loads and load combinations, thus being adopted 

as the base procedure in the Eurocodes for the safety verification of this connections (Jaspart, 

J. P., Weynand, K. (2016)). 

 

2.2 Component Method 

 

The application of the component method to the design of connections is based upon the 

assumption that these connections are made up of a set of individual components, hereinafter 

referred to as basic components. The basic components may be subjected to stresses of 

various natures such as tension, compression and shear stresses as well as to an interaction of 

different stresses. 

 

For each one of the basic components, their respective resistance and stiffness may be 

determined, allowing for the analysis of the global behaviour of the joint. 

Taking into account the need to divide the joint in its respective basic components, the design 

of structural connections can be divided into different steps, which for the particular case of 

welded connections are as follows: 

 

 Determination of the distribution of forces in both flanges of the beam, considering the 

acting axial force and bending moment. 

 Determination of the resistance and safety assessment in the tension zone. 
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 Determination of the resistance and safety assessment in the compression zone. 

 Determination of the resistance and safety assessment of the column’s web in shear. 

 Determination of the resistance and safety assessment of the welds to the flanges and 

web. 

2.2.1 Force Distribution in the Beam 

 

The tension 𝐹𝑡,𝐸𝑑 and compression 𝐹𝑐,𝐸𝑑 design forces acting on the beam flanges can be 

determined assuming that the contribution of the beam web to the transmission of both the 

bending moments and the axial forces to the column is negligible. Hence, the design forces 

acting on the beam flanges are exclusively a function of the distance between the centre of 

gravity of the beam flanges (ℎ𝑏 − 𝑡𝑓𝑏). 

 

𝐹𝑡,𝐸𝑑 =
𝑀𝐸𝑑

(ℎ𝑏 − 𝑡𝑓𝑏)
−

𝑁𝐸𝑑

2
 (2.1) 

 

𝐹𝑐,𝐸𝑑 =
𝑀𝐸𝑑

(ℎ𝑏 − 𝑡𝑓𝑏)
+

𝑁𝐸𝑑

2
 (2.2) 

 

where ℎ𝑏 is the beam height and 𝑡𝑓𝑏 is the thickness of the beam flange. 

 

 
 

Figure 2.1 – Force distribution (SCI/BCSA. (2013)) 

 

2.2.2 Column Flange in Bending 

 

The resistance of the column flange in bending connected to an unstiffened column depends 

upon the dispersion of the tension force between the beam flange and the column web. This 

dispersion can be taken into account by the effective width 𝑏𝑒𝑓𝑓. 
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𝑏𝑒𝑓𝑓 = 𝑡𝑤𝑐 + 2𝑠 + 7𝑘𝑡𝑓𝑐 (2.3) 

 

where 𝑡𝑤𝑐 is the thickness of the column web, 𝑠 is the root radius of the column for rolled I or 

H sections or 𝑠 = √2𝑎 (𝑎 being the weld throat) for welded I or H sections, 𝑡𝑓𝑐 is the 

thickness of the column flanges and 𝑘 = (
𝑡𝑓𝑐

𝑡𝑓𝑏
) (

𝑓𝑦,𝑐

𝑓𝑦,𝑏
) ≤ 1 (4) with 𝑓𝑦,𝑐 and 𝑓𝑦,𝑏 being the 

design yield strength of the column and the beam respectively. 

The effective width is limited by both the beam (𝑏𝑒𝑓𝑓 ≤ 𝑏𝑏) and column (𝑏𝑒𝑓𝑓 ≤ 𝑏𝑐) width. 

 

 
 

Figure 2.2 – Beam tension flange effective width (SCI/BCSA. (2013)) 

 

The design value for the resistance of the effective width of the beam flange is given by 

 

𝐹𝑡,𝑓𝑏,𝑅𝑑 =
𝑏𝑒𝑓𝑓𝑡𝑓𝑏𝑓𝑦,𝑓𝑏

𝛾𝑀0
 (2.5) 

 

2.2.3 Column Web in Tension 

 

Analogous to the beam tension flange, the resistance of the column web in tension depends on 

the dispersion of the tension force between the two elements. In this case however the 

dispersion can be taken with a ratio of 1/2.5 of both the root radius and column flange 

thickness, limited in any case by the end of the column, and thus, the effective length of the 

column web is given by expression (2.6). 

 

𝑏𝑒𝑓𝑓,𝑡,𝑤𝑐 = 𝑡𝑓𝑏 + 2𝑠𝑓 + 5(𝑠 + 𝑡𝑓𝑐) (2.6) 

 

𝑠𝑓 = √2𝑎  being the flange weld length. 
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Figure 2.3 – Column web in tension effective length (SCI/BCSA. (2013)) 

 

The design resistance of the column web component can be determined from expression (2.7) 

 

𝐹𝑡,𝑤𝑐,𝑅𝑑 =
𝜔𝑏𝑒𝑓𝑓,𝑡,𝑤𝑐𝑡𝑤𝑐𝑓𝑦,𝑤𝑐

𝛾𝑀0
 (2.7) 

 

In order to take into account the interaction between the tension and shear stresses acting on 

the column web, expression (2.7) includes the reduction factor 𝜔 which in its turn depends 

upon the transformation parameter 𝛽. 

 

 

Transformation parameter 𝛽 Reduction factor 𝜔 

0 ≤ 𝛽 ≤ 0.5 𝜔 = 1 

0.5 < 𝛽 < 1 𝜔 = 𝜔1 + 2(1 − 𝛽)(1 − 𝜔1) 

𝛽 = 1 𝜔 = 𝜔1 

1 < 𝛽 < 2 𝜔 = 𝜔1 + (𝛽 − 1)(𝜔2 − 𝜔1) 

𝛽 = 2 𝜔 = 𝜔2 

𝜔1 =
1

√1 + 1.3(𝑏𝑒𝑓𝑓,𝑐,𝑤𝑐𝑡𝑤𝑐/𝐴𝑣𝑐)2
 𝜔2 =

1

√1 + 5.2(𝑏𝑒𝑓𝑓,𝑐,𝑤𝑐𝑡𝑤𝑐/𝐴𝑣𝑐)2
 

𝐴𝑣𝑐 is the shear área of the column 

𝛣 is the transformation parameter 
 

Figure 2.4 – Reduction factor for interaction with shear (adapted from Comite Europeen de 

Normalisation. (2010)) 

 

The transformation parameter 𝛽 allows for the relation between the shear force developed on 

the web panel and the compressive and tensile connection forces. Since the value of 𝛽 is a 

function of the internal forces acting on the joint, and these forces for their turn variate with 

the stiffness of the joint, an iterative process would be required. Such a process can be 
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avoided for practical application as long as adequate values of 𝛽 are considered and used to 

model the joints beforehand, leading to a safe non-iterative analysis of the structure. 

 

 

Figure 2.5 – Transformation parameter β (Jaspart, J. P., Weynand, K. (2016)) 

 

 
Figure 2.6 – Transformation parameter β approximate values (Jaspart, J. P., Weynand, K. 

(2016)) 

 

If the resistance of the beam flange and column web in the tension zone are adequate, column 

tension stiffeners may be disregarded, which can be expressed as, 

 

𝐹𝑡,𝐸𝑑 ≤ 𝐹𝑡,𝑓𝑏,𝑅𝑑 (2.8) 
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𝐹𝑡,𝐸𝑑 ≤ 𝐹𝑡,𝑤𝑐,𝑅𝑑 (2.9) 

 

If either one of expressions (2.8) or (2.9) or beff < (
fy,b

fu,b
) bb are not verified, a pair of partial 

or full depth stiffeners should be provided.  

These stiffeners contribute simultaneously to the tension resistance of the column web as well 

as to restrict the bending of the column’s flange and their minimum area should be determined 

to ensure the design force Fs,Ed. 

 

𝐹𝑠,𝐸𝑑 = 𝐹𝑡,𝑓𝑏,𝑅𝑑 −
𝜔𝑏𝑒𝑓𝑓,𝑡,𝑤𝑐𝑡𝑤𝑐𝑓𝑦,𝑐

𝛾𝑀0
 (2.10) 

 

The recommended overall width of each stiffener should be, 

 

𝑏𝑠𝑔 ≥
0.75(𝑏𝑐 − 𝑡𝑤𝑐)

2
 (2.11) 

 

 

Figure 2.7 – Tension stiffeners (SCI/BCSA. (2013)) 

 

2.2.4 Beam Flange in Compression 

 

The effective width 𝑏𝑒𝑓𝑓 of the beam flange in the compression zone is as given for the 

tension zone.  
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The resistance of the beam compression flange connected to an unstiffened column is given 

by, 

 

𝐹𝑐,𝑓𝑏,𝑅𝑑 =
𝑏𝑒𝑓𝑓𝑡𝑓𝑏𝑓𝑦,𝑓𝑏

𝛾𝑀0
 (2.12) 

 

2.2.5 Column Web in Compression 

 

The resistance of the column web in the compression zone 𝐹𝑐,𝑤𝑐,𝑅𝑑 depends, as was the case 

for the web in the tension zone, upon the dispersion of the compression force through the end 

plate, the column flange and the root radius, leading to  

 

𝑏𝑒𝑓𝑓,𝑐,𝑤𝑐 = 𝑡𝑓𝑏 + 2𝑠𝑓 + 5(𝑠 + 𝑡𝑓𝑐) + 𝑠𝑝 (2.13) 

 

where 𝑠𝑝 = 2𝑡𝑝 when an end plate of 𝑡𝑝 thickness is provided. 

 

𝐹𝑐,𝑤𝑐,𝑅𝑑 =
𝜔𝑘𝑤𝑐𝑏𝑒𝑓𝑓,𝑐,𝑤𝑐𝑡𝑤𝑐𝑓𝑦,𝑤𝑐

𝛾𝑀0
 (2.14) 

 

𝐹𝑐,𝑤𝑐,𝑅𝑑 ≤
𝜔𝑘𝑤𝑐𝜌𝑏𝑒𝑓𝑓,𝑐,𝑤𝑐𝑡𝑤𝑐𝑓𝑦,𝑤𝑐

𝛾𝑀1
 (2.15) 

 

Reduction coefficient 𝑘𝑤𝑐 allows for coexisting longitudinal compressive stress 𝜎𝑐𝑜𝑚,𝐸𝑑 in the 

column and is given by, 

 

𝜎𝑐𝑜𝑚,𝐸𝑑 ≤ 0.7𝑓𝑦,𝑤𝑐 𝑘𝑤𝑐 = 1.0 (2.16) 

 

𝜎𝑐𝑜𝑚,𝐸𝑑 > 0.7𝑓𝑦,𝑤𝑐 𝑘𝑤𝑐 = 1.7 −
𝜎𝑦,𝑤𝑐

𝑓𝑦,𝑤𝑐
 (2.17) 

 

Where 𝜎𝑦,𝑤𝑐 is the maximum compressive stress acting on the column’s web. 

For the cases in which the column is in tension throughout, 𝑘𝑤𝑐 = 1.0. 

 



 

Machine learning techniques in connection design  2 Design of Welded Beam to Column Connections 

 

 

 

10 

 

 

Figure 2.8 – Column web in compression effective length (SCI/BCSA. (2013)) 

 

The reduction factor 𝜌 in expression (2.15) allows for the consideration of plate buckling and 

is given by, 

 

�̅�𝑝 ≤ 0.72 𝜌 = 1.0 (2.18) 

 

�̅�𝑝 > 0.72 𝜌 =
�̅�𝑝−0.2

�̅�𝑝
2  (2.19) 

 

Where, 

 

�̅�𝑝 = 0.932√
𝑏𝑒𝑓𝑓,𝑐,𝑤𝑐𝑑𝑤𝑐𝑓𝑦,𝑤𝑐

𝐸𝑡𝑤𝑐
2  (2.20) 

 

and  

 

𝑑𝑤𝑐 = ℎ𝑐 − 2(𝑡𝑓𝑐 + 𝑠) (2.21) 

 

If both the resistance of the flange and column web in the compression zone are adequate, 

compression stiffeners may be disregarded, and both expressions (2.22) and (2.23) are 

verified. 

 

𝐹𝑐,𝐸𝑑 ≤ 𝐹𝑐,𝑓𝑏,𝑅𝑑 (2.22) 

 

𝐹𝑐,𝐸𝑑 ≤ 𝐹𝑐,𝑤𝑐,𝑅𝑑  (2.23) 
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If either one of expressions (2.22), (2.23) or 𝑏𝑒𝑓𝑓 < (
𝑓𝑦,𝑏

𝑓𝑢,𝑏
) 𝑏𝑏 are not verified then full depth 

compression stiffeners are required and should be provided symmetrically on both sides of the 

column web. Partial depth stiffeners are also allowed although their application demands a 

more complex analysis of web buckling phenomena. 

 

In order for a stiffened column to be considered to be appropriately designed, both the 

resistance of the effective stiffener cross section as well as its buckling resistance should be at 

least equal to the design force acting at the compression flange. 

 

The effective section of the compression stiffener can be determined considering a cruciform 

cross section comprised of a 15𝜀𝑡𝑤𝑐 length of web at either side of the added stiffener and a 

width 𝑏𝑠𝑔 of the later that depending on its thickness 𝑡𝑠 should be limited to, 

 

𝑏𝑠𝑔 ≤ 14𝑠𝑡𝑠 (2.24) 

 

in order to avoid torsional buckling, which corresponds to complying with the Class 3 limit 

for compression flange outstands. 

 

 

Figure 2.9 – Compression stiffeners (SCI/BCSA. (2013)) 

 

The buckling resistance can be determined by taking into account the effective area 𝐴𝑠,𝑒𝑓𝑓 and 

the second moment of area of the stiffener 𝐼𝑠 

 

𝐴𝑠,𝑒𝑓𝑓 = (30𝑠𝑡𝑤𝑐 + 𝑡𝑠)𝑡𝑤𝑐 + 2𝑏𝑠𝑔𝑡𝑠 (2.25) 
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𝐼𝑠 =
(2𝑏𝑠𝑔 + 𝑡𝑤𝑐)3𝑡𝑠

12
 (2.26) 

 

The above mentioned cross sectional resistance of the effective compression stiffener can be 

determined by expressin (2.27), 

 

𝑁𝑐,𝑅𝑑 =
 𝐴𝑠,𝑒𝑓𝑓𝑓𝑦

𝛾𝑀0
 (2.27) 

 

The stiffener’s flexural buckling resistance depends as it is the case for other elements, upon 

their respective non-dimensional slenderness, which for the case of the compression stiffener 

may be obtained through expression (2.28), 

 

�̅� =
𝑙

𝑖𝑠𝜆1
 (2.28) 

 

Where 𝜆1 = 93.9𝜀, the radius of gyration 𝑖𝑠 = √𝐼𝑠/𝐴𝑠,𝑒𝑓𝑓 and 𝑙 is the critical buckling length 

of the stiffener, which for columns restrained against twist may be assumed to be not less than 

𝑙 = 0.75ℎ𝑤 and for the cases where the column has no restrains against twist should be 

considered to be 𝑙 = ℎ𝑤. 

 

For the cases in which �̅� ≤ 0.2, the stiffener’s flexural buckling may be disregarded and only 

the cross sectional resistance should be verified. 

 

If �̅� > 0.2, the flexural buckling resistance can be determined by, 

 

𝑁𝑏,𝑅𝑑 =
𝜒𝐴𝑠,𝑒𝑓𝑓𝑓𝑦

𝛾𝑀1
 (2.29) 

 

Where, 

 

𝜒 =
1

𝛷 + √𝛷2 − �̅�2
≤ 1 (2.30) 

 

 

𝛷 = 0.5(1 + 𝛼(�̅� − 0.2) + �̅�2) (2.31) 

 

with 𝛼 = 0.49 and 𝑓𝑦 is the minimum yield strength of either the column or the stiffener. 
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2.2.6 Column Web Panel Shear 

 

The shear resistance of the column web panel may be the conditioning basic component of the 

connection for the cases of double-sided connections with either unbalanced or same direction 

bending moments and for single-sided beam to column connections. 

 

 

Figure 2.10 – Column web panel shear (Comite Europeen de Normalisation. (2010)) 

´ 

The shear force acting in the column web panel 𝑉𝑤𝑝,𝐸𝑑 of a single-sided connection may be 

conservatively taken as equal to the compression force  𝐹𝑐,𝐸𝑑 for the cases where no axial 

force is acting on the beam. If there are axial forces acting on the beam to be connected, their 

effect should be considered. 

For two-sided connections, the shear force value will depend upon the direction of the 

bending moment. For the cases in which moments with opposing directions arise, 

 𝑉𝑤𝑝,𝐸𝑑 = |𝐹𝑐,𝐸𝑑,1 − 𝐹𝑐,𝐸𝑑,2|, otherwise  𝑉𝑤𝑝,𝐸𝑑 = 𝐹𝑐,𝐸𝑑,1 + 𝐹𝑐,𝐸𝑑,2. 

 

 

 

Figure 2.11 – Shear force design force (SCI/BCSA. (2013)) 
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The shear resistance of the column web panel, for an unstiffened web with a slenderness 

limited to 𝑑𝑐/𝑡𝑤𝑐 ≤ 69𝜀 may be determined as, 

 

𝑉𝑤𝑝,𝑅𝑑 =
0.9𝑓𝑦𝑐𝐴𝑣𝑐

𝛾𝑀0√3
 (2.32) 

 

where, 𝑑𝑐 = ℎ𝑐 − 2(𝑡𝑓𝑐 + 𝑠) is the clear height of the column web, 𝐴𝑣𝑐 is the column’s shear 

area and 𝑓𝑦𝑐 is the column’s yield strength. 

 

For the cases in which 𝑑𝑐/𝑡𝑤𝑐 > 69𝜀 nothing is mentioned in EN 1993-1-8, being suggested 

however that, 

 

𝑉𝑤𝑝,𝑅𝑑 = 0.9𝑉𝑏𝑤,𝑅𝑑 (2.33) 

 

 𝑉𝑏𝑤,𝑅𝑑 is the web’s contribution for the shear resistance of reinforced or unreinforced webs as 

defined by EN 1993-1-5 and may be obtained from, 

 

𝑉𝑏𝑤,𝑅𝑑 =
𝜒𝑤𝑓𝑦𝑤ℎ𝑤𝑡

√3𝛾𝑀1

 (2.34) 

 

where 𝜒𝑤 is the factor for the contribution of the web to the shear buckling resistance. 

 

For the cases for which the web resistance is not sufficient on its own, supplementary web 

plates or diagonal stiffeners may be considered. 

 

When the web’s reinforcement is achieved by means of supplementary web plates, additional 

requirements must be fulfilled: 

 

 The same steel grade should be considered for both the column and the supplementary 

plates. 

 The thickness of the supplementary web plates should be at least that of the column 

web panel. 

 The width of the supplementary web plates should extend to the fillets of the column 

while not exceeding 40𝑠𝑡𝑠. 

 The length of the supplementary web plate should extend at least to the effective 

length of the tension and compression zones of the column web. 

 

Whenever these requirements are fulfilled, the supplementary web plate contributes for the 

increase in the joint resistance: 
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 50% of web tension resistance for an additional plate on one side or a 100% if two 

additional plates, one on each, side are considered. 

 50% of web compression resistance for an additional plate on one side or a 100% if 

two additional plates, one on each, side are considered. 

 75% of web panel shear resistance for either one or two additional plates. 

 

 

Figure 2.12 – Supplementary web plates dimensions (SCI/BCSA. (2013)) 

The contribution of supplementary web plates for the area of a column web panel is equal to 

𝑏𝑠𝑡𝑤𝑐. Since that the increase in resistance is independent of the thickness of the additional 

plates, only one plate will contribute to the column web panel shear resistance. Furthermore, 

for the cases for which the supplementary plates are only required for the increase of shear 

resistance, the width of the plates is only required to be such that the toes of the fillet welds 

reach the fillets of the column section. 

 

If the supplementary web plates are used as reinforcement for the tension resistance, their 

contribution depends on the throat thickness of the welds that connect them to the web and the 

effective thickness of the column web plate may be assumed to be 𝑡𝑤,𝑒𝑓𝑓 = 1.5𝑡𝑤𝑐 or 

𝑡𝑤,𝑒𝑓𝑓 = 2𝑡𝑤𝑐 respectively for one or two supplementary plates. 

 

The increase of the column web compression resistance, achieved through supplementary web 

plates, can be determined in an analogous way as for the case of tension resistance, 

considering an effective thickness of 𝑡𝑤,𝑒𝑓𝑓 = 1.5𝑡𝑤𝑐 or 𝑡𝑤,𝑒𝑓𝑓 = 2𝑡𝑤𝑐 respectively for one or 

two supplementary plates and the reduction factor 𝜔 in expression (2.14) and (2.15) should be 

based on the increased shear area. 
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In the cases where the web’s reinforcement is achieved by means of diagonal stiffeners, three 

types of stiffeners are usually considered, K stiffener, N stiffener or Morris stiffener. 

 
Figure 2.13 – Diagonal stiffeners (SCI/BCSA. (2013))  

 

The K stiffener is usually applied for the cases where large ratios of connection depth to the 

depth of the column are being analysed. 

 

N stiffeners may be adopted instead of K stiffeners for cases for which the access to tensioned 

bolts is not ideal. 

 

Both K and N type stiffeners should be designed as compression stiffeners. 

 

The Morris stiffener was developed to diminish the observed difficulties in placing the bolts 

for the cases where K and N stiffeners are considered. Morris stiffeners are usually combined 

with compression stiffeners to improve the web resistance in the compression zone.  

 

2.2.7 Welds 

 

The design of a connection must also take into account the design of its welds which should 

allow for the correct transfer of both shear and tension loads between the elements to be 

connected. This can be achieved by means of fillet or butt welds. 

 

The shear resistance of a fillet weld can be determined accordingly to expression (2.35) 

 

𝐹𝑣𝑤,𝑅𝑑 =
𝑎𝑓𝑢/√3

𝛽𝑤𝛾𝑀2
 (2.35) 
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Where 𝑎 is the throat thickness of the weld, 𝑓𝑢 is the ultimate tensile strength of the weaker 

part, 𝛽𝑤 is a correlation factor according to the strength of the weaker part and may be taken 

as 0.85 or 0.90 for S275 and S355 steel grades respectively. 

 

The resistance of a fillet weld to transverse forces is given by, 

 

𝐹𝑛𝑤,𝑅𝑑 = 𝐾
𝑎𝑓𝑢/√3

𝛽𝑤𝛾𝑀2
 (2.36) 

 

Where 𝐾 = √
3

1+2𝑐𝑜𝑠2𝜃
 and 𝜃 is the angle between the transverse force and the throat of the 

weld as represented in Figure 2.14. 

 

Figure 2.14 – Transverse force applied to a weld (SCI/BCSA. (2013)) 

 

It is usual for practitioners to design the welds as a full-strength connection in order to avoid 

that these component be the conditioning one. When considering fillet-welds, full-strength 

connections can be achieved by means of a throat thickness of 1.0 or 1.2 times the smallest 

thickness to be connected for S275 or S355 grade steel respectively. Full penetration butt 

welds for their turn have a design resistance that may be considered to be equal to the design 

resistance of the weaker part to be connected. 

 

 

Figure 2.15 – Weld types (SCI/BCSA. (2013)) 
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2.3 Summary 

 

Despite rather exhaustive, the design procedure previously presented, is currently applied in a 

somewhat simple and expeditious manner, being it through the development of self-made 

spreadsheets, or by means of available software, either one of them comprising a common 

practice. 

However, even a broadly automated task, repeated on a large number of examples, may 

become a time consuming and prone to error process. In order to bypass this issue, it may be 

of interest to take advantage of different techniques, not physic based but rather based upon 

data available from previous examples, such as is the case of the application of learning 

algorithms, the base for Machine Learning. 
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3 MACHINE LEARNING 

 

The increasing complexity of a wide range of problems, across numerous fields, may lead to 

situations for which there isn’t a particular method for computing an output based upon the 

available inputs or situations where the needed computation is much too expensive, making 

the application of common explicit programming impractical or even impossible. In order to 

bypass these issues, an alternative approach, in which a computer tries to learn from 

examples, known as learning methodology, can be taken advantage of. 

 

The various definitions of Artificial Intelligence (AI) laid out by different authors can be 

divided, accordingly to Russel (Russel, S. J., Norvig, P. (2016)), into four categories 

(Thinking Humanly; Thinking Rationally; Acting Humanly; Acting Rationally), depending on 

what concerns each one of them, be it the thought process and reasoning capabilities of a 

machine, their behaviour or their success in accurately execute different tasks when compared 

to human performance (Figure 3.1). 

 

Thinking Humanly 

“The exciting new effort to make computers 

think…machines with minds, in the full and 

literal sense.” (Haugeland (1985)) 

 

“[The automation of] activities that we 

associate with human thinking, activities 

such as decision-making, problem solving, 

learning…” (Bellman (1978)) 

Thinking Rationally 

“The study of mental faculties through the 

use of computational models.” (Charniak 

and McDermott (1985)) 

 

“The study of the computations that make it 

possible to perceive, reason, and act.” 

(Winston (1992)) 

Acting Humanly 

“The art of creating machines that perform 

functions that require intelligence when 

performed by people.” (Kurzweil (1990)) 

 

“The study of how to make computers do 

things at which, at the moment, people are 

better.” (Rich and Knight (1991)) 

Acting Rationally 

“Computational Intelligence is the study of 

the design of intelligent agents.” (Poole et al 

(1998)) 

 

“AI…is concerned with intelligent 

behaviour in artifacts.” (Nilsson (1998)) 

 

Figure 3.1– Artificial Intelligence definitions (adapted from Russel, S. J., Norvig, P. (2016)) 

 

Although the first recognized work in AI was done in 1943 by Warren McCulloch and Walter 

Pitts following the works of Russel, Whitehead and Turing’s theory of computation, the field 

has its official birthplace in Dartmouth, following McCarthy’s initiative to organize a two-

month workshop in Dartmouth College during the summer of 1956 (Russel, S. J., Norvig, P. 

(2016)). 
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Machine Learning (ML) and AI are sometimes sought as being interchangeable concepts. 

However, the former can be classified as a subfield of the latter (Figure 3.2). The term 

Machine Learning was coined by Arthur Samuel in 1959 and can be defined as a branch of 

computer science which goal is to develop models by means of algorithms that can 

automatically extract patterns from within a dataset and then use the found patterns to make 

predictions regarding new data (Murphy, K. P. (2012)).  

 

 

Figure 3.2 – The different levels of AI (adapted from Goodfellow, I., Bengio Y., Courville, 

A. (2016)) 

 

The process involved in the resolution of a certain problem by means of Machine Learning 

techniques is composed of a set of interlinked steps that result in a workflow such as the one 

presented on Figure 3.3. 

The first step, here named “Get Data”, is one of the most important steps since it is this initial 

volume of data that will be the basis of all remaining work, and from which will depend on 

the quality of the created models. Once all the data has been gathered it is usually necessary to 

preprocess it (“Clean, Prepare and Manipulate Data”) given for instance the existence of 

incorrect examples, examples with missing information or simply because some algorithms 

will only work if the data being given as an input is in a specific format. 

Once all the dataset related tasks have been completed, it is necessary to choose a model for 

the respective training process to begin. The original dataset is usually divided in some 

proportion into a training and a testset. The first is used as an input for the learning algorithm 

in order to be possible to define the proper parameters enabling the development of a model 
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with a good quality. Once the training process is completed, it is possible to analyse the 

quality of the model by comparing its predictions with the actual labels of a held out dataset, 

such as is the case of the testset. Considering the quality of the results which can be measured 

by different metrics, it is possible to further tune the algorithm’s parameters in order to further 

improve the quality of the results. 

 

 

Figure 3.3 – Machine Learning workflow  

 

3.1 Types of learning 

 

Machine learning approaches may be divided into different learning types such as supervised, 

unsupervised, semi-supervised learning and reinforcement learning. 

 

3.1.1 Supervised learning 

 

Supervised learning is the most used form of ML. In this type of learning, the algorithms are 

presented with a dataset containing not only the value of the different features  𝑥(𝑗) (in the 

form of a feature vector 𝒙𝒊) describing each example but also their respective label or target 

𝑦(𝑗), thus comprising pairs of input-output (feature-label) which may be given to the machine 

as a training set in the form of the collection of training examples {(𝒙𝒊, 𝒚𝒊)}𝑖=1
𝑁 , where the 

label vector 𝒚𝒋 may comprise, for example, a finite set of classes {1,2, … , 𝐶}, real numbers or 

even other more complex structures.  

Supervised learning, as the term itself suggests, consists in showing the machine what to do 

by providing the “answer” 𝒚𝒋, as a teacher would do, or in this case, a knowledgeable external 

supervisor. The objective of the machine is thus to find a hypothesis ℎ (or a function 𝑓(𝑥))  

from a training set that should enable a close agreement with the known labels in order to 

allow for posterior predictions on new inputs, a process known as generalization (Russel, S. 

J., Norvig, P. (2016)). 

One of the best-known and oldest examples of supervised learning task is the application to 

the Iris dataset, which comprises a collection of 150 examples of Iris flowers, namely the 

measurements of some of their characteristics (features) such as the sepal length, sepal width, 

petal length and petal width, together with the respective species classification. 
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3.1.2 Unsupervised learning 

 

As opposed to supervised, in unsupervised learning, the algorithms are presented with 

datasets comprised of unlabelled examples {(𝒙𝒋)}
𝑖=1

𝑁
 thus being impossible to provide the 

algorithm with any kind of “answer” 𝒚𝒋 or desired output. The objective of this kind of 

learning is to find properties of interest and meaningful information such as patterns within 

the structure of our data in order to create a model that takes an input such as a feature vector 

and transforms it into an output that may be used to solve a practical problem. 

One of the most common examples of unsupervised learning is the task of clustering. This 

kind of tasks consist in organizing a large quantity of information into subgroups known as 

clusters that comprise a group of elements that are similar between themselves but whose 

characteristics are different from other clusters. 

 

3.1.3 Semi-supervised learning 

 

As the term suggests and following the previous definitions semi-supervised learning falls 

somewhere in between unsupervised and supervised learning. In semi-supervised learning, the 

provided dataset is comprised of both labelled and unlabelled examples, many of the times in 

an unbalanced way, with the unlabelled examples largely outnumbering the labelled ones. 

Since the 1990’s, there’s been a growing interest in semi-supervised learning, especially 

applied to natural language and text classification problems. Although it may seem 

counterintuitive, there are cases for which the application of semi-supervised learning yields 

better results than if supervised learning is applied, in particular, those for which “the 

distribution of examples, which the unlabelled data will help elucidate, be relevant for the 

classification problem”. (Chapelle, O., Schölkopf, B., Zien, A. (2006) 

 

3.1.4 Reinforcement learning 

 

In reinforcement learning a system often known as a decision-making agent is able to improve 

its performance by maximizing the expected reward in order to achieve a certain goal. These 

different rewards are a result of the actions executed by the machine in its interaction with its 

surrounding environment. 

Usual examples of reinforcement learning comprise chess engines and other kinds of game 

playing, where the reinforcement is the winning or losing of the game, as well as robotics or 

logistics, where the reinforcement can be accomplished or not of a given task (Sutton, R. S., 

Barto, A. G. (2018)).  
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3.2 Types of Problems 

 

3.2.1 Classification 

 

In a classification task, the goal of the learning algorithm is to find the class, among a finite 

set of 𝐶 discrete classes, to which an unlabelled example belongs to, based on past 

observations. In order to do so, the algorithm looks for a function 𝑓: ℝ𝑛 ⟶ {1, … , 𝐶} which 

assigns a feature vector 𝒙 to the class 𝑦, 𝑦 = 𝑓(𝒙). If a single label vector 𝒚𝟏 comprises just 

𝐶 = 2 classes, then the problem at hand may be defined as a binary classification problem, 

otherwise, for the cases in which 𝐶 > 2, the classification is defined as being multiclass. 

Furthermore, if more than a label exists for each example and their classes are not mutually 

exclusive, the problem is referred to as a multi-labelled one. 

A typical example, referred in Section 3.1.1, is the classification of the Iris flowers, where the 

goal is to determine the type of Iris (Setosa, Versicolour, Virginica) each example is. 

 

3.2.2 Regression problems 

 

The objective of regression problems is to predict a target in the form of a numerical 

continuous value, by giving the model an input. This task is similar to classification problems, 

although with a different output format and can be achieved by looking for a function 

𝑓: ℝ𝑛 ⟶ ℝ. 

Regression tasks are commonly used by insurance companies in order to predict the amount 

of claims that might be made by an insured person (Goodfellow, I., Bengio Y., Courville, A. 

(2016)). 

 

3.2.3 Clustering 

 

Clustering learning problems, which can usually be solved by means of algorithms such as the 

k-means clustering algorithm, consist upon the division of a dataset into clusters composed of 

similar examples. Contrary to regression and classification tasks, in clustering problems, the 

training examples do not have an associated label, being the algorithm’s objective, the 

creation of clusters and thus an implicit definition of classes through the definition of the 

corresponding groups of examples (Silva, C., Ribeiro, B. (2018)). Hence, clustering is not 

only inserted in the set of unsupervised learning but is also unsupervised learning’s most 

common type of problem. 

A usual example of the application of this type of learning task is the creation of groups of 

users of e-commerce platforms, based upon their purchasing behaviour, which will enable 

these platforms a targeted advertising strategy (Murphy, K. P. (2012)). 
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1
 https://archive.ics.uci.edu/ml/datasets/iris 

 

3.2.4 Anomaly detection 

 

Anomaly detection tasks, also known as outlier detection, consists in the analysis of a 

problem by means of an algorithm that identifies examples that correspond to abnormal or 

atypical cases and that are thus identified for being considerably different from the remaining 

examples composing the dataset. 

This type of task is not usually defined as a supervised classification learning problem, 

composed of two classes, one corresponding to the so-called normal examples and the other to 

the outliers, since usually, the number of examples that could be classified as outliers is very 

low and thus it cannot compose a pattern that may be easily found by a two-class classifier. 

Anomaly detection techniques are usually deployed by companies in tasks such as credit card 

fraud detection (Goodfellow, I., Bengio Y., Courville, A. (2016)). 

 

3.3 Data Preprocessing 

 

Data preprocessing is a process in which a feature or group of features is extracted or 

modified from a raw dataset in order to obtain a final dataset more suitable for a particular 

machine learning model, thus enabling higher quality outputs (Zheng, A., Casari, A. (2018)). 

 

3.3.1 Normalization 

For the case of the more common data type, numerical data and depending on the chosen 

machine learning algorithm, it may be necessary to consider among others, the scale of the 

inputs, which may lead to the need to normalize the features, a process where the original 

range of values of a feature is converted into a standard range such as [0;1] (Burkov, A. 

(2019)).  

 

3.3.2 Standardization 

The statistical distribution of features in a dataset, or the probability that a feature takes a 

particular value, might also be of importance for the performance of the ML algorithm. In 

these particular cases, a standardization procedure should be considered. The standardization 

of a feature consists in rescaling it in order to give it the properties of a standard normal or 

Gaussian distribution with 𝜇 = 0 mean and 𝜎 = 1 standard deviation.  

 

https://archive.ics.uci.edu/ml/datasets/iris
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3.3.3 Binning 

It may also be of interest in some cases to convert a numerical feature into a categorical one in 

which case a binning or bucketing process, consisting of converting a continuous feature into 

different value ranges is applied. This process can be better understood considering a task 

where a feature comprising the age of a group of people represented by real value numbers, is 

divided into different bins with 0 to 10 years-old on a bin, 10 to 20 years-old on the following 

bin and so on.  

 

3.3.4 One-hot encoding 

As opposed to the binning process mentioned above, when a particular feature is comprised of 

different classes, thus corresponding to a so-called categorical feature, and the intended 

learning algorithm only accepts as input numerical feature vectors, the later should be 

transformed into different binary features, leading to an increased dimension of the feature 

vector, in a process known as one-hot encoding (Burkov, A. (2019)). 

 

In some cases, due to the data gathering process or during the construction of the dataset, 

especially when this dataset is obtained through a handcraft approach, the values of some 

features may be omitted. In order to tackle this issue, different approaches are usually 

followed, among them, the complete dismissal of the examples for which one or more 

features are missing and the application of data imputation techniques, the later consisting of 

replacing the missing values by either the average value of the feature, a value outside the 

normal range of the feature or still a value in the middle of the normal range allowing that the 

missing value won’t significantly affect the prediction. 

 

Data preprocessing may also be of interest for analysis in which the dataset comprises a 

considerable number of repeated examples and which for that reason may be removed. 

The presence of irrelevant features or features with high correlation among each other may 

allow a reduction of the overall size of the dataset without an impact in the output’s quality 

(Silva, C., Ribeiro, B. (2018).  

 

3.4 Training Models 

 

The no free lunch theorem, a well-known theorem within the field of machine learning 

(Wolpert, D.H.(1997)), states that all algorithms have the same performance when one 

considers all possible problems and available data. However, for specific problems, a 

selection process should be pursued in order to find the most suited algorithm and their 

respective settings. 

Unless one has the time to apply them all, the selection of machine learning algorithms for the 

task in hands is not an easy process. This selection may be guided by a process of 
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performance assessment, in which a quantitative measure of the quality of a model can be 

obtained and be used for an informed decision (Burkov, A. (2019)). 

Different models have widespread levels of complexity and the decision to pick one of them 

can depend upon different factors. If the data is highly nonlinear, the choice for an algorithm 

which is only able to handle linearly separable data can lead to a poor performance. The 

explainability of an algorithm may be important for specific tasks and divide the different 

algorithms into “white-box” and “black-box” algorithms. With “white-box”, the users can 

have a clear view of the decision-making process followed to obtain the wanted outputs which 

also allows their validation. “Black-box” algorithms such as neural networks, although they 

may be very accurate, the obtained outputs can be hard to explain and understand. 

As mentioned before, the available dataset can be comprised of different data types 

(numerical, categorical) which may not be accepted by different algorithms, or which might 

require a pre-processing in order to be accepted. 

The training time and prediction speed can also be important factors to consider while 

choosing the proper machine learning algorithm. 

 

3.4.1 Hyperparameters 

 

Hyperparameters can be understood as tunable settings of the different learning algorithms 

which are neither directly estimated nor optimized by the machine learning algorithm itself, 

although it is possible to develop procedures in which the hyperparameters of the former 

learning algorithm are tuned and optimized by another algorithm (Goodfellow, I., Bengio Y., 

Courville, A. (2016)). Usually, the process of tuning the hyperparameters is done by 

searching the combination of values that yields the best result through a grid search 

procedure. For the cases for which the number of hyperparameters make the grid search 

procedure impractical, different techniques may be adopted such as a random search, genetic 

algorithms, among others (Burkov, A. (2019)). 

 

3.4.2 Overfitting and Underfitting 

 

The main objective of the learning algorithm in an early phase of the learning process consists 

of properly fitting the model to the training data. If the obtained training error, computed on 

the training set yields unacceptable results, meaning that the built model fails in predicting the 

outputs of the set in which it was trained, the model is said to be underfitting, which may be a 

result of an insufficiently complex model or uninformative features. 

Once the issue of underfitting has been overcome, the goal of the model becomes to correctly 

predict new examples. When the complexity of the chosen model is such that not only it 

learns the patterns present in the dataset but also the particular characteristics of each 
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example, it may behave poorly in the presence of new data in which case it is said to be 

overfitting.  

3.4.3 Training, Validation and Test Sets 

 

In order to choose the appropriate machine learning algorithm for the specific task being 

undertaken, it is usual to split the available dataset into different subsets.  

The first subset, known as the training set, is used to fit or build the model and is usually 

comprised of 70% to 80% of randomly obtained examples of the original dataset, although 

other split ratios can be considered. 

The remaining 20% to 30% of the data is usually equitably divided between the validation and 

test sets. The former is used to estimate prediction error for model selection and tuning the 

appropriate values of hyperparameters and the latter to assess the generalization error of the 

chosen model. 

Alpaydin (Alpaydin, E. (2014)) uses a clear, easy to understand analogy in order to explain 

the difference between the different sets: “…when we are taking a course: the example 

problems that the instructor solves in class while teaching a subject form the training set; 

exam questions are the validation set; and the problems we solve in our later, professional life 

are the test set”.  

 

3.5 Learning Methods 

3.5.1 Linear Regression 

 

Linear regression models are one of the most commonly used forms of supervised machine 

learning algorithms owing to their simplicity and interpretability, while also being very 

effective in many different tasks.  

These models are the basis for all the other regression methods and have their simplest 

expression in the form of the simple linear regression which can be written in the form 

 

𝑦(𝑥) = 𝛽0 + 𝛽1𝑥 + 𝜖 (3.1) 

 

where 𝐸(𝑌|𝑋 = 𝑥) = 𝛽0 + 𝛽1𝑥 is the mean function, and 𝜖 is the statistical error to take into 

account the difference between the actual response true and the predicted results. 𝛽0 and 𝛽1 

are usually unknown parameters that characterize a model, and which may be estimated from 

the data through different methods. These parameters are known, respectively, as the intercept 

and the slope and are represented in Figure 3.4. 
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Figure 3.4 – Simple linear regression visualization (Weisberg, S. (2013)) 

 

The most usual method used for the estimation of the intercept 𝛽0 and slope 𝛽1 parameters is 

the ordinary least squares method (OLS). 

 

For the more common cases in which a model contains a set of different variables, a 

generalization of the simple linear regression, known as multiple linear regression, must be 

developed, and thus 

 

𝒀 = 𝑿𝜷 + 𝝐  (3.2) 

 

where 𝒀 a 𝑁 ∗ 1 vector, represents the resultant, 𝑿 is a 𝑁(𝐷 + 1) matrix of features, 𝜷 is a 

(𝐷 + 1) ∗ 1 vector of regression coefficients or weights and 𝜖 is the residual error between 

the predictions and the respective response as mentioned for the simple linear regression case. 

It is also usual to find the previous expression written in the form 

 

As mentioned above, the estimation of the coefficients 𝛽 can be made, among others, by 

means of the least squares method also known as maximum likelihood estimation. The goal of 

the least squares linear regression is to minimize the sum of squared errors (SSE) sometimes 

also called residual sum of squares (RSS), which corresponds to minimize the sum of the 

lengths of the vertical (black) lines between each training value (red dots) and the respective 

prediction as represented in Figure 3.5. 

 

𝑆𝑆𝐸 = ∑(𝑦𝑖 − 𝑦(𝑥𝑖))2

𝑁

𝑖=1

= ∑(𝑦𝑖 − ∑ 𝑤𝑗𝑥𝑖𝑗 − 𝜖

𝐷

𝑗=1

)2

𝑁

𝑖=1

 (3.3) 
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Figure 3.5 – Linear least squares fitting (Hastie, T., Tibshirani, R., Friedman, J. (2013)) 

 

3.5.2 Logistic Regression 

 

Although this type of model has the same objective as that of all other regression models, and 

despite being called a regression, this method is in fact a form of classification (Murphy, K. P. 

(2012)) and not a regression model since the obtained responses or outputs correspond to 

discrete binary values which can be understood as categories such as true or false and success 

or fail. 

 

The bounded nature of the outputs involved in Logistic Regression problems, means that the 

application of the ordinary least squares method (OLS) to the data is not the correct approach 

as this would allow the return of values outside the expected range. 

 

In order to allow for a continuous function with a codomain [0,1] that represented the above-

mentioned categories such as true or false if an input is close to 1 or 0 respectively, and 

considering its mathematical flexibility and the interpretability of its parameters, the sigmoid 

or standard logistic function was adopted, 

 

𝑓(𝑥) =
1

1 + 𝑒−𝑥
 (3.4) 

 

where 𝑥 is the input and 𝑒 is Euler’s number which constitutes the base of the natural 

logarithm. 
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Figure 3.6 – Logistic functions (Montgomery, D. C., Peck, E. A., Vining, G. G. (2015)) 

 

The Logistic Regression model to be fitted to the data has the form, 

 

𝑠𝑖𝑔𝑚(𝛽0 + 𝛽1𝑥) =
𝑒𝛽0+𝛽1𝑥

1 + 𝑒𝛽0+𝛽1𝑥
=

1

1 + 𝑒−(𝛽0+𝛽1𝑥)
 (3.5) 

 

where 𝛽0 and 𝛽1 are the unknown parameters which for Linear Regression models were 

estimated by means of the least squares method by minimizing the sum of squared errors 

observed between the predicted values and the actual response. In Logistic Regression 

models, the estimate of the unknown coefficients is made by means of the maximum 

likelihood method, which maximizes the probability of returning the actual data and demands 

the construction of the likelihood function which represent the probability of the observed 

data as a function of the unknown parameters. 

 

3.5.3 Decision Trees 

 

This type of learning technique addresses an originally complex problem by splitting it into a 

variety of smaller, simpler problems, in a hierarchical structured divide-and-conquer-like 

approach, constituting a very simple and interpretable algorithm which can be summed up 

into a set of if-then rules (Silva, C., Ribeiro, B. (2018)) and can be applied to both 

classification and regression problems. 

 

A decision tree can be defined as a nonparametric method which divides the feature space into 

local regions to which a class is associated. Decision trees are composed of decision nodes 𝑚 

which comprise a test function 𝑓𝑚(𝒙) from where different branches emerge, each one of 
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these branches corresponding to a possible feature value or range of values (Alpaydin, E. 

(2014)).  

The first step is to select a feature to be placed at the first decision node, usually known as the 

root node, and to create a branch for different values of the feature thus splitting the problem 

into subsets, a process which can be recursively repeated until the leaf nodes, at the base of 

the decision tree are achieved, and thus an output is obtained. Each path followed between the 

root node and the different leaf nodes corresponds to a classification rule. 

 

 
Figure 3.7 – Dataset partition and corresponding decision tree (Alpaydin, E. (2014)) 

 

The goal while constructing a decision tree is to obtain the shortest possible decision tree, and 

thus to arrive to the leaf nodes in the shortest number of decision nodes, which can be 

achieved by testing the most important attribute first and hence by looking at information 𝐼 or 

entropy, a measure of the randomness of a variable to be predicted, in this case, a class. If for 

a particular learning problem exists an optimum attribute, it would divide the examples into 

subsets that are all positive or all negative while if an attribute generates subsets with a similar 

proportion of negative and positive examples as that of the original set, it would be a rather 

useless one. 

 

 
Figure 3.8 – Choice of attribute and obtained subset distribution (Silva, C., Ribeiro, B. 

(2018)) 
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Information 𝐼 is measured in bits and can be computed by counting the number of yes/positive 

𝑝 or no/negative 𝑛 classes ate a node and dividing each one by the total number of 

possibilities, leading to their respective probabilities 𝑃(𝑣𝑖).  

 

𝐼(𝑃(𝑣1), 𝑃(𝑣2), … , 𝑃(𝑣𝑛)) =  𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑃(𝑣1), 𝑃(𝑣2), … , 𝑃(𝑣𝑛)) = − ∑ 𝑃(𝑣𝑖)𝑙𝑜𝑔2(𝑃(𝑣𝑖))𝑛
𝑖

      (3.6) 

 

where 𝑣𝑛 is the nth possible answer of the random variable 

 

Information 𝐼 is usually also referred to as entropy. It reaches its maximum of 𝑙𝑜𝑔2(𝑃(𝑣𝑖) 

when the possible values of the random variable of interest 𝐼 are equiprobable 𝑃(𝑣𝑖) = 𝑃(𝑣𝑗) 

for any 𝑖 different from 𝑗, and its minimum of 𝐼(𝑋) = 0 if there is any 𝑖 for which 𝑃(𝑣𝑖) = 1, 

corresponding to the cases for which the random variable only have a single value and thus all 

examples have the same label. 

 

 

Figure 3.9 – Entropy function (Alpaydin, E. (2014)) 

 

The reduction of entropy due to the partitioning of the examples in its turn can be measured 

by the information gain achieved from the feature or attribute 𝐴 in each decision node. 

 

𝐺𝑎𝑖𝑛(𝐴) = 𝐼(𝑃(𝑣1), 𝑃(𝑣2), … , 𝑃(𝑣𝑛)) − ∑
𝑣𝑖

𝑣𝑛

𝑣
𝑖=1 𝐼(𝑃(𝑣1), 𝑃(𝑣2), … , 𝑃(𝑣𝑣))  (3.7) 

 

where 𝑣𝑣 is the 𝑣th possible answer of a subset obtained from the division of the feature 

considered on a decision node to the ones below. 

 

There are some criteria that can be considered in order to define the moment for which the 

division process should be stopped. The first one corresponds to the case for which all 

examples belong to a single class and thus the leaf node is pure. 

In some other situations a certain minimum number of instances entering a node may be 

required, since a generalization error may be incurred due to decisions which are based upon 
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an insufficient number of examples. This process known as prepruning simplifies the tree. A 

minimum value for the reduction of entropy during the splitting process of a decision node 

may also be considered as a stop criterion for the construction of a decision tree. 

 

3.5.4 Random Forests 

 

This algorithm falls in a particular learning method known as ensemble learning in which a 

set of different models learned from the data are used in order to achieve the intended goal 

(Silva, C., Ribeiro, B. (2018)). This approach is usually compared to typical human decision-

making processes in which the opinion of multiple experts is taken into account and 

eventually combined in order to achieve a consensus or, in the cases for which this is not 

possible, a voting procedure is engaged upon. 

 

The ensemble learning method is thus based upon the assumption that a set of 𝑘 learning 

algorithms will achieve better results than a single learning technique, if the obtained outputs 

are properly combined, being the combination of the different algorithms achieved by means 

of voting algorithms.                                                                                                                                         

 

There are several reasons that may ultimately guide the practitioner to the use of ensemble 

learning such as reducing the risk of having a bad performance in the test set by combining 

the outputs of an array of different algorithms which make different assumptions about the 

presented data, or by using an array of the same learning technique although with the use of 

different values for the corresponding hyperparameters. 

In particularly large datasets, while the use of a single model may be inefficient, the partition 

of the dataset into random subsets and the use of different individual classifying algorithms in 

each subset, in a process called bagging, may make the global analysis a more efficient one, 

reducing variance and overfitting. In bagging also known as bootstrap aggregation, the above-

mentioned subsets are obtained from the training set with replacement of the chosen 

examples, enabling that different subsets may contain the same example. The output class is 

determined from the individual classifying algorithms by choosing the one that was obtained 

from the latter the most number of times. 

It may also be of interest to apply different learning techniques in a serially manner, which 

can be made among others through boosting or cascading, allowing for the current running 

algorithm to pick up and give emphasis to instances that previous models failed to learn. 

As mentioned for the case of decision trees, one way to solve complex problems is to follow a 

divide-and-conquer approach, this also applies for ensemble learning, in particular in 

situations where a set of different algorithms are capable of solving issues that a single 

algorithm cannot solve. 
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Random forests can be applied to both classification and regression problems and are based 

upon the bagging technique mentioned above, consisting in a process where multiple decision 

trees are built and for which the output is the value that appears most often, known as mode, 

for classification tasks, and the mean of the predicted value for each decision tree in the case 

of regression problems.  

The different subsets used by this learning technique should comprise about 66% of the total 

number of training examples each. The number of examples to be considered in a subset and 

the number of decision trees constitute the most important random forest’s hyperparameters.  

For each training subset, a subset of 𝑚 features are randomly chosen, being the one with the 

most information gain placed at the root node, as usually done for the case of individual 

decision trees. The random selection process of features avoids possible correlations between 

decision trees, increasing the overall accuracy of random trees. 

 

3.5.5 k-Nearest Neighbors 

 

The k-Nearest Neighbors algorithm, also known as kNN is another simple and explainable 

learning technique, one that is instance-based meaning that unlike other type of machine 

learning algorithms where a model is fitted to the dataset allowing the training examples to be 

discarded after, in this technique the training instances have to be stored since they are only 

used when a new example has to be classified, and thus a model is never really built. This 

leads to a process for which the computational power is deployed mainly in the test stage 

while the training process is almost non-existent. This type of processes is sometimes slow 

and with a duration that is proportional to the number of training examples, demanding larger 

computational efforts being usually inserted in the lazy learning framework. 

 

The kNN learning technique uses the 𝑘 nearest examples of the training set to classify a new 

unseen input, based upon a specific distance, considering for this effect the predominant class 

in the set of the 𝑘 nearest training elements.  

Considering the previous description of the procedure used by the kNN approach, there are a 

few key considerations to be made, namely the use of representative samples instead of the 

full training set depending on the number of examples, the choice of the number of the 𝑘 

nearest examples, the type of distance used to measure the proximity of the training points to 

the new unseen data and the method used to classify the new input. 
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Figure 3.10 – kNN example (Nilsson, N. J., (2005)) 

 

The definition of the value 𝑘 is no easy task demanding, many times, the use of a tuning 

procedure to find the best value depending on the problem in hands. Taking into account the 

example defined by Figure 3.11, where three different options are considered for the value of 

the 𝑘 nearest neighbors. For 𝑘 = 1, thus a small value, the output would be a square and it 

may be considerably influenced by noisy data. For a larger 𝑘 = 7 the obtained answer would 

be the class of triangles, while increasing even further the number of 𝑘 = 15 the output would 

once again be the class of squares, being obvious the influence of data points of different 

classes when considering large values of 𝑘. The values considered for the number of 

neighbors 𝑘 should always correspond to an odd number in order to avoid ties, in which case 

the obtained output would be a random value between the tied ones (Kuhn, M., Johnson, K. 

(2018)). 

Different advantages and disadvantages can be pointed out when using small or large values 

of 𝑘. When considering the latter, as expected, the computational effort demanded by the 

algorithm is greater, enabling however smoother decision boundaries and the extraction of 

probabilistic information due to the availability of the proportions of examples that belong to 

the different existing classes.  
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Figure 3.11 – Influence of the value 𝑘 (Silva, C., Ribeiro, B. (2018)) 

 

The distances used to evaluate the nearest neighbors can be computed in different ways, being 

the Euclidean and the Manhattan the two most common used distances. 

The well-known Euclidean distance corresponds to the shortest distance between two points 𝑥 

and 𝑦 and may be defined as, 

 

𝑑(𝑥, 𝑦) = √∑ (𝑥𝑗 − 𝑦𝑗)2𝑛
𝑗=1   (3.8) 

 

The Manhattan distance between the two abovementioned points, can be interpreted as a path 

with 90° turns, which can be computed as, 

 

𝑑(𝑥, 𝑦) = ∑ |𝑥𝑗 − 𝑦𝑗|𝑛
𝑗=1   (3.9) 

 

 

Figure 3.12 – Distance definition – Euclidean (Left) and Manhattan (Right)  (Silva, C., 

Ribeiro, B. (2018)) 

The classification of an example based upon the class of the 𝑘 nearest neighbors, can be done 

through different approaches, being the simplest one known as the majority voting, which 

accordingly to its name consists in assigning to the new example the class which is the most 

represented by the examples that constitute the 𝑘 nearest neighbors. Another more complex 

approach is to assigned different weights for the different neighbors, proportional to their 
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distance to the new example. Since the closest neighbors should represent better the class to 

which the new example belongs, their contribution, and hence their weight, for the 

classification of the example should be greater and thus one possible weight to be considered 

could be 
1

𝑑(𝑥,𝑦)2 (Silva, C., Ribeiro, B. (2018)). The latter procedure also contributes in 

making the obtained output less vulnerable to fluctuations of the  𝑘 value. 

 

3.5.6 Neural Networks 

 

Artificial neural networks (ANN) were developed following a growing interest regarding the 

functioning of the human brain and the realization that this process could be efficiently 

replicated by computers. 

The human brain is comprised of a set of 10
11

 individual simple elements known as neurons, 

which are interconnected in such a way that each neuron is linked to 10
4
 of its peers, forming 

a web that allows the execution of complex tasks and decisions in an efficient and rapid way. 

This performance is a result of a neuron’s low switching times to excitations received from 

the connections to other neurons, a process that occurs in 10
-3

 seconds, and that when 

compared to the switching speeds of computers 10
-10

 seconds seems rather slow. 

Taking into account a neuron’s switching time and that for example a 10
-1

 seconds time span 

is needed to recognized our loved ones, it would be expected that only a few hundreds of the 

10
11

 neurons would be involved in this processes, leading to the assumption by the scientists 

that the brain’s functioning is a result of a synergy obtained from a large quantity of neurons 

working in parallel instead of the sum of each neuron’s individual action. 

Nowadays scientists believe that a part of the biological neural network is born with each 

subject, while the rest is a result of the different experiences and interactions to which one is 

subjected to, leading to the creation of new connection resulting in new learnings, memories 

and other basic neural biological functions. 

Figure 3.18 represents a single neuron and its structure which can be divided up into a 

Dendrite, the body cell or Soma and Axon. The first act as receivers and are comprised of 

nervous cells that carry electrical signals to the Soma where the sum of the different received 

signals is carried out. Depending on the value of this sum, if a certain threshold is achieved, 

the signal is sent to the Axon, otherwise the neuron won’t transmit any information down the 

network and thus won’t excite the neurons to which it is connected. When the defined 

threshold is met, the signal is passed to other neurons through the synapses, being the 

connection with different neurons as strong as the respective synapse which ultimately 

depends upon the value of the sum received from the Soma.  

As ANNs are based upon biological neural networks, they exhibit a considerable number of 

characteristics that can be observed in human cognitive processes, namely, the ability to learn 

from experience, the possibility of generalization from examples and the capacity of 

abstraction regarding characteristics that only contain irrelevant facts for the situation in 
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hands. Furthermore, this type of learning technique is fault tolerant, leading to a considerable 

adaptation capacity. 

 

Figure 3.13 – Neuron  (Russel, S. J., Norvig, P. (2016)) 

 

Artificial neural networks (ANN), a field which is sometimes also mentioned as parallel 

distributed processing, connectionism or neural computation, can be understood as a network 

analogous to the biological neural networks described previously, in which the neurons are 

represented by basic units known as perceptrons. 

 

 

Figure 3.14 – Perceptron  (Russel, S. J., Norvig, P. (2016)) 

 

A perceptron 𝑗 has as its goal the calculation of a linear combination by means of a weighted 

sum 𝑖𝑛𝑖 of the activation values 𝑎𝑖 (Equation 3.10) in order to obtain an output which can take 

the values 0 or -1 depending on the activation value determined from an activation function 

𝑔(𝑖𝑛𝑖). 

 

𝑖𝑛𝑖 = ∑ 𝑤𝑖,𝑗𝑎𝑖
𝑛
𝑖=0   (3.10) 
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where 𝑎𝑖 is the so-called activation received from unit or perceptron 𝑖 and 𝑤𝑖,𝑗 is the weight 

associated to link from perceptron 𝑖 to 𝑗, and that determines both the sign and strength of the 

connection. 

In addition to the different weights associated to the different links it is also taken into 

account an additional weight 𝑤0,𝑗 known as bias weight which defines perceptron 𝑗’s 

threshold. 

 

The goal of the activation function, as the name suggests is determine if the weighted sum 𝑖𝑛𝑖 

activates or inactivates the perceptron. Furthermore, it is usual to define the activation 

function as a nonlinear function due to the fact that if a linear function is considered, the 

entirety of the neural network is resumed to a linear function. 

Considering the threshold function as the activation function, the activation process could be 

represented as, 

 

{
1 𝑓𝑜𝑟 ∑ 𝑤𝑖,𝑗𝑎𝑖

𝑛
𝑖=0 ≥ 0

0 𝑓𝑜𝑟 ∑ 𝑤𝑖,𝑗𝑎𝑖
𝑛
𝑖=0 < 0

  (3.11) 

 

 

Figure 3.15 – Activation functions. Threshold function (left), Linear function (middle), 

Sigmoid function (right)   (Russel, S. J., Norvig, P. (2016)) 

 

Despite being able to represent simple logic operations such as the And and Or Boolean 

functions, a single perceptron is limited to the representation of linearly separable functions, 

which is a serious limitation, one that demands the construction of a network of perceptrons 

with different structures. 
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Figure 3.16 – And and Or  Boolean fuctions (Silva, C., Ribeiro, B. (2018)) 

 

Accordingly to whether the data can follow only a direction along the network or there will be 

a loop, the ANN can be classified as a feed-forward network or as a recurrent network. 

Feed-forward networks, as the name implies, are networks that are comprised of connections 

that only go along one way, receiving inputs upstream and delivering outputs downstream, 

thus representing itself a function of the inputs. 

Recurrent networks on their turn, allow as inputs their own obtained outputs, resulting in a 

more complex system for which its response depends upon not only on the fed inputs but also 

upon the initial state of the inputs obtained from the outputs making them harder to 

understand. 

 

The example presented in the figure below represents a 3-layer artificial neural network. The 

first layer, known as the input layer, is comprised of two inputs 𝑥1 and 𝑥2, each connected to a 

middle layer, in this particular case a single hidden layer composed of two perceptrons 𝑛1 and 

𝑛2. The output layer is comprised, in this example, of a single perceptron 𝑛3 with a single 

output. 

 

While the definition of the number of input and output perceptrons only depends upon the 

number of available features and intended outputs, the number of hidden layers is of harder 

definition, being able to influence not only the algorithms capacity to solve the problem if an 

insufficient number of layers are chosen but also its generalization capabilities if too many 

hidden layers are considered. 
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Figure 3.17 – Neural network with 3 layers (Silva, C., Ribeiro, B. (2018)) 

 

In order to simplify the understanding of the procedure of finding the weights to be 

considered in a neural network, a simple single layered network, usually known as single-

layer feed-forward neural network or perceptron network is considered. 

 

The goal of the training is to determine the weights that lead to the determination of correct 

output for the different training examples. Two possibilities are usual considered, the 

perceptron training rule and the delta rule. 

 

The perceptron training rule begins with a random set of values for the different weights. This 

are then altered every time a example is misclassified, a process repeated until the perceptron 

is able of classifying every training example, being the different weights updated accordingly 

to, 

 

𝑤𝑖+1 = 𝑤𝑖 + 𝛥𝑤𝑖 (3.12) 

 

𝛥𝑤𝑖 = 𝜂(𝑡 − 𝑜)𝑥𝑖 (3.13) 

 

where 𝑡 is the target output, 𝑜 is the output generated by the perceptron and 𝜂 is a positive 

constant known as learning rate, whose function is to moderate the rate at which the weights 

may vary at each training example. Considering the definition of 𝛥𝑤𝑖 it is easy to conclude 

that if an example is correctly classified then 𝑡 = 𝑜 and 𝑡 − 𝑜 = 0 and thus 𝛥𝑤𝑖 = 0, leading 

to no updates on the value of the respective weight. 

 

Despite of the intuitive nature of the perceptron training rule, and its ability to converge in a 

finite number of steps, for a small enough value of 𝜂, this will only happen if the displayed 

examples are linearly separable, otherwise, convergence is non-guaranteed. 

To solve this issue the gradient descent-based delta rule was developed, allowing for the 

determination of the weight vector that best suits the intended outputs. 
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The process starts with the definition of a measure for the training error, which is usually 

chosen to be the sum of squared errors, previously used for linear regression and which is 

defined for the ANN as 

 

𝐸(𝒘) =
1

2
∑ (𝑡𝑑 − 𝑜𝑑)2

𝑑∈𝐷   (3.14) 

 

where 𝑑 an example belonging to the training set 𝐷, being 𝐸 represented as a function of the 

weight vector 𝒘 due to the fact that the outputs 𝑜 are a function of this same vector, 

depending on the training set as well. 

 

Taking into account the definition of 𝐸(𝒘) and visualizing the space composed by two 

weights 𝑤0 and 𝑤1 and their respective errors 𝐸, a parabolic surface comprising a single 

global minimum is obtained. The weight vector to which the global minimum corresponds 

can be determined from an initial random weight vector and considering an iterative process 

which follows the steepest descent direction until the minimum value of 𝐸 is obtained, in a 

process known as gradient descent. 

 

 

Figure 3.18 – Error surface (Mitchell, T. M. (1997)) 

 

Due to the limited nature of perceptron networks which are only capable of representing 

linear decision boundaries, a new approach known as multilayer networks, capable of 

representing highly nonlinear decision boundaries, was developed. Multilayer networks work 
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with a continuous, differentiable function, known as sigmoid function, previously seen for the 

case of logistic regression, allowing for the use of the gradient descent technique. 

 

The consideration of additional layers, known as hidden layers, allows the obtainment of an 

enlarged space of hypothesis. Despite this however, the ideal number of hidden layers to be 

considered for the different problems remains a topic under investigation. 

 

Unlike single layered networks, in which the error may be determined by comparing the 

obtained and the target outputs, in multi-layered networks, this process is not directly 

applicable since it is not possible to know the target for the hidden layers, making it difficult 

to determine the error and hence the different weights. 

 

In order to overcome this difficulty, a new algorithm, known as Backpropagation algorithm 

was developed. This technique is based upon a redefinition of the error 𝐸 applied in this case 

to the entirety of the output units and defined as, 

 

𝐸(𝒘) =
1

2
∑ ∑ (𝑡𝑘𝑑 − 𝑜𝑘𝑑)2

𝑘∈𝑜𝑢𝑡𝑝𝑢𝑡𝑠𝑑∈𝐷   (3.15) 

 

with 𝑡 and 𝑜, respective the target and obtained outputs for the 𝑘th
 output unit and for the d

th
 

example. 

 

The Backpropagation algorithm starts by defining the number of input units, hidden layers 

and output units and considering random values for the initial configuration of weights as 

done for the perceptron network. Then for each training example the inputs are propagated 

forward through the network until the determination of the different outputs, followed by the 

computation of their respective errors 𝛿𝑘 

 

𝛿𝑘 = 𝑜𝑘(1 − 𝑜𝑘)(𝑡𝑘 − 𝑜𝑘) (3.16) 

 

These errors are then propagated backwards along the hidden layers, allowing for the 

determination of the hidden layer’s error 𝛿ℎ and the updated weights 𝑤𝑗𝑖.  

 

𝛿ℎ = 𝑜ℎ(1 − 𝑜ℎ) ∑ 𝑤𝑘ℎ𝛿𝑘𝑘∈𝑜𝑢𝑡𝑝𝑢𝑡𝑠   (3.17) 

 

𝑤𝑗𝑖 = 𝑤𝑗𝑖 + 𝛥𝑤𝑗𝑖 (3.18) 

 

𝛥𝑤𝑗𝑖 = 𝜂𝛿𝑗𝑥𝑗𝑖  (3.19) 

 

This iterative process is repeated for the array of different examples that belong to the training 

set until a specified stop criterion, such as the number of iteration or a threshold for the error 
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is met. This sometimes required that the same training set be presented several times in its 

entirety to the algorithm, each one of these times comprising what is known as an epoch. 

 

Although it is possible to apply the gradient descent method for the determination of the 

weights vector 𝒘, the obtained error surface may comprise not only a single global minimum 

but instead, multiple local minima. Despite this, the Backpropagation method has allowed for 

good results in a large array of different practical problems. 

 

3.5.7 Support Vector Machines 

 

A Support Vector Machine (SVM) is a learning algorithm that is inserted in the supervised 

learning framework, and which is based upon statistical learning techniques. SVM’s were 

developed in the 1990’s by Vapnik as a binary classification technique, although regression-

oriented versions are also available, making them a fairly recent approach when compared to 

other learning algorithms.  

This learning algorithm has some particular characteristics which make it a very robust and 

high-performance ML technique and hence a rather popular one, being the recognition of 

handwritten digits a common application. Among these characteristics one can highlight its 

good generalization capabilities, obtained by maximizing the distance between the example 

points and the decision boundary, a process known as maximum margin separator; the use of 

the kernel trick, allowing the algorithm to cope not only with linear separable data but also 

with nonlinear datasets, giving SVM’s a great advantage when compared to learning 

techniques which are exclusively oriented to linear representations. Due to the nonparametric 

nature of this learning algorithms, SVM’s may need to store a significant portion of the 

presented examples, allowing it the possibility to represent complex functions, this however is 

counterbalanced by the fact that in reality the algorithm will only use a small part of these 

examples, the ones it considers more important, hence contributing for a good behaviour 

regarding the issue of overfitting. 

 

As mentioned above, SVM’s have its roots in the field of statistical learning. Their goal is to 

minimize expected generalization loss instead of the empirical loss, in other words, instead of 

attempting to minimize the loss (the number of mislabelled examples in case of classification 

problems) inferred from the training set, the algorithm tries to minimize the problem’s real 

loss by assuming that the unseen data has the same distribution as the examples presented in 

the training set and by looking for the previously mentioned maximum margin separator. 

 

Taking into consideration the simplest SVM’s, those that revolve around binary classification, 

also known as Support Vector Classification (SVC), in which the goal is to find the best plane 

that separates two classes, a positive and a negative one, it is easy to verify from Figure 3.19 
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that different separating planes, known as hyperplanes, can be drawn, however only the 

maximum margin separator will minimize generalization loss.  

 

 

Figure 3.19 – Linear separators (Russel, S. J., Norvig, P. (2016)) 

 

A margin can be geometrically interpreted as the width that separates the closest data points 

of different classes, these particular data points are known as support vectors. 

 

 
Figure 3.20 – Maximum margin separator and support vectors (Russel, S. J., Norvig, P. 

(2016)) 

 

The maximal margin classifier or hard margin SVM is based upon a linear function in the 

form of equation (3.20) that assigns a +1 or -1 classification for 𝑓(𝑥) ≥ 0 or 𝑓(𝑥) < 0 

respectively and can only be applied to linearly separable data. 

 

𝑓(𝑥) = (𝒘. 𝒙) + 𝑏 (3.20) 
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where 𝒘 is the weight vector and 𝑏 is the biases, the former defines a direction perpendicular 

to the hyperplane while the later moves the hyperplane along its parallel direction. 

 

The maximal margin hyperplane is defined as, 

 

(𝒘. 𝒙) + 𝑏 = 0 (3.21) 

 

Considering the imposed restrictions 

 

(𝒘. 𝒙) + 𝑏 ≥ +1, for 𝑦𝑖 = +1 (3.22) 

 

(𝒘. 𝒙) + 𝑏 ≤ −1, for 𝑦𝑖 = −1 (3.23) 

 

the linear classifiers that separate a set have a positive margin, meaning that the above 

restrictions ensure that does not exist any example between the hyperplanes defined by both 

 

(𝒘. 𝒙) + 𝑏 = 0 and |(𝒘. 𝒙) + 𝑏| = 1 (3.24) 

 

Considering that the Euclidian distance between the support vectors and the separating 

hyperplane can be represented by 𝑑+ and 𝑑− respective for the positive and negative support 

vectors, and that 𝜌 is the maximum margin obtained between all the hyperplanes and thus 

𝜌 = 𝑑+ + 𝑑−. 

 

The distance between any given point 𝑥𝑖 and an hyperplane (𝒘, 𝑏) is given by  

 

𝑑𝑖(𝒘, 𝑏, 𝑥𝑖) =
|(𝒘. 𝑥𝑖) + 𝑏|

‖𝒘‖
=

𝑦𝑖((𝒘. 𝑥𝑖) + 𝑏)

‖𝒘‖
 (3.25) 

 

and as a result, 

 

𝑑𝑖(𝒘, 𝑏, 𝑥𝑖) ≥
1

‖𝒘‖
 (3.26) 

 

The above expression leads to 𝑑+ = 𝑑− =
1

‖𝒘‖
 and thus, 

 

𝜌 =
2

‖𝒘‖
 (3.27) 
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Figure 3.21 – Margin definition (Burkov, 2019) 

 

As can be concluded, the maximum margin separator that will allow the best generalization 

capabilities corresponds to, 

 

𝑚𝑎𝑥 𝜌 (3.28) 

 

subject to 𝑦𝑖((𝒘. 𝑥𝑖) + 𝑏)≥ 
1

‖𝒘‖
, 𝑖 = {1,2, … , 𝑛} which constitutes the primal problem. 

 

However, this problem is usually rephrased to the equivalent dual problem, 

 

𝑚𝑖𝑛 ‖𝒘‖ (3.29) 

 

subject to 𝑦𝑖((𝒘. 𝑥𝑖) + 𝑏)≥ 1, 𝑖 = {1,2, … , 𝑛} 

 

The above mentioned dual problem corresponds to a quadratic programming optimization 

problem, which results in the definition of the support vectors and the bias 𝑏, thus allowing 

for the classification of a test example through the sign of the  function, 

 

𝑓(𝒛) = (𝒘∗. 𝒛) + 𝑏∗  (3.30) 

  

where the 𝒘∗ and 𝑏∗ are the result of the optimization problem. 

 

The classification is obtained simply by means of the dot product between the test set 𝒛 and 

the different obtained support vectors. 

In most of the practical cases, the structure of the available dataset is noisy hence not linearly 

separable, and thus, rigid margin SVMs are not able to return a solution. 
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Unlike hard margin SVMs, soft margin SVMs allow for examples to fall on the wrong side of 

the separating hyperplane and despite the possibility of misclassified examples, one tries to 

keep the probability of their existence to a minimum. It may happen as well that although the 

example is correctly classified, it lies within the margin. 

 

In order to take into account, the possibility of misclassified examples, the previously stated 

quadratic programming optimization problem is transformed to the form, 

 

𝑚𝑖𝑛
1

2
‖𝒘‖2 + 𝐶 ∑ 𝜉𝑖

𝑛
𝑖=1   (3.31) 

 

subject to 𝑦𝑖((𝒘. 𝑥𝑖) + 𝑏)≥ 1 − 𝜉𝑖, 𝜉𝑖 ≥ 0, 𝑖 = {1,2, … , 𝑛} 

 

where ∑ 𝜉𝑖
𝑛
𝑖=1  is the soft error and 𝜉𝑖 are known as slack variables which can be geometrically 

interpreted as the distance between the misclassified examples and the separating hyperplane. 

If 𝜉𝑖 = 0 then the example is correctly classified and not within the margin, if 0 < 𝜉𝑖 < 1 the 

example is correctly classified but it falls within the margin and if 𝜉𝑖 ≥ 1 then the example is 

misclassified. 

 𝐶 is a parameter that controls the trade-off between the complexity of the algorithm and the 

number of misclassified examples., the bigger the value of C, the bigger the penalty when an 

example is misclassified. 

 

Both hard and soft margin SVMs are linear classifiers, which do not suffice in highly 

nonlinear datasets. In these cases, a different approach, where the original features are 

transformed into a higher dimensionality space, in which they can then be linearly separated, 

may be followed. Figure 3.22 shows a nonlinearly separable dataset in a 2D space 

transformed into a 3D space in which it is now possible to linearly separate the data. 
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Figure 3.22 – Representation of a single boundary in different dimensions  (Russel, S. J., 

Norvig, P. (2016)) 

 

In this approach the increase in dimensionality of the feature vector 𝒙 is achieved by means of 

basis functions 𝜙(𝒙). Since the function 𝜙(𝒙) that works best for the dataset in hands is 

unknown at the start, it would be necessary to transform each example into the higher 

dimensional space, and then applying the SVM to the data considering different mapping 

functions, which would become a very inefficient process since first one would have to 

transform the feature vectors and then proceed to the computation of their dot product. In 

order to avoid this issue, and since only the previously mentioned dot product is needed, the 

well-known Kernel Trick is applied, making it possible to compute this dot product after 

mapping the feature vectors which can be achieved by means of kernel functions. Considering 

two examples 𝒙1 and 𝒙2, the kernel function can be defined as, 

 

𝜙(𝒙1) 𝜙(𝒙2) = 𝐾(𝒙1, 𝒙2)  (3.32) 

 

where depending upon the chosen kernel function 𝐾(𝒙1, 𝒙2), SVM can learn among others,  

𝑑𝑡ℎ polynomial classifiers, radial basis (RBF) or sigmoid neural networks. 

 

𝐾𝑝𝑜𝑙𝑦(𝒙1, 𝒙2) = (𝒙1. 𝒙2 + 1)𝑑 (3.33) 

 

𝐾𝑅𝐵𝐹(𝒙1, 𝒙2) = 𝑒(−𝛾(𝒙1−𝒙2)2)  (3.34) 

 

𝐾𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝒙1, 𝒙2) = tanh (𝑘1(𝒙1. 𝒙2) + 𝑘2)  (3.35) 
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3.6 Evaluation metrics 

 

The ability of a machine learning algorithm to perform a certain task 𝑇 can be assessed by 

means of specific quantitative measures of performance 𝑃, which allow the user to evaluate 

the quality of the chosen model (Goodfellow, I., Bengio Y., Courville, A. (2016)). 

Depending on the type of problem at hand (classification or regression), different performance 

assessment metrics can be considered, some of them however may be applied to both 

problems (Zheng, A., Casari, A. (2018)).  

 

3.6.1 Confusion Matrix 

 

Confusion Matrices are used in Classification tasks and allow, when compared with other 

metrics, a more detailed analysis of the predicted classification for the different examples and 

their distribution among the existing classes. The importance in knowing this distribution is 

related to the cost of misclassifications which can be different depending on the class. This 

issue can be understood considering an analogous situation such as the one in which a doctor 

as to diagnose a cancer patient. In this particular situation, the cost of diagnosing the patient 

with cancer when in reality it does not exist, also known as a False Positive (FP), is rather 

different from the cost of diagnosing a patient as cancer-free when in reality he or she is not. 

Confusion Matrices are not limited to binary classification problems but can also be applied to 

multiclass ones. 

 

A common example used to present the Confusion Matrix is the classification of emails as 

“Spam or “Not Spam”. In this problem, the learning algorithm is provided with the set of 

email’s text and metadata as input in order to obtain a label as output with classes “Spam” or 

“Not Spam”, which can also be respectively named as “positive” or “negative” or even as “1” 

or “0”. 

 

 
 

Table 3.1 –  Email classification Confusion Matrix (Burkov, A. (2019)) 

 

From the analysis of the table above, it is possible to conclude that 23 examples where 

correctly classified as being spam and are thus True Positives (TP). However, there was 1 

example which was classified as not being spam when in reality it in fact was, corresponding 

to what is known as a False Negative (FN). From the 568 examples that were in reality not 
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spam, 556 examples where correctly classified (True Negatives (TN)), while 12 were wrongly 

labelled as spam (FP). 

 

Considering the simplest of cases, the Confusion Matrix of a fixed classifier 𝑓 and a test set of 

𝑇 examples can be mathematically defined as, 

 

𝑪(𝒇) = {𝑐𝑖𝑗(𝑓)}, 𝑖, 𝑗 ∈ {1,2, . . , 𝑙} = ∑ [(𝑦 = 𝑖)⋀(𝑓(𝑥) = 𝑗)]𝑇
𝑥=1   (3.36) 

 

where 𝑥 is a test set example and 𝑦 the corresponding label. 𝑖 and 𝑗 are, respectively, the rows 

and columns of the matrix and 𝑙 is the number of classes.  

Each element of the matrix 𝑐𝑖𝑗(𝑓), corresponds to the number of examples that in reality 

belong to the class 𝑖 but were assigned by the classifier the class 𝑗. 

 

 

Table 3.2 – Generic Confusion Matrix (Japkowicz, N., Shah, M. (2011)) 

 

From the analysis of equation (3.36) and Figure 3.24, one can conclude that the diagonal 

entries 𝑐𝑖𝑖 of a Confusion Matrix correspond to the correct classified examples, while the 

remain nondiagonal ones are misclassified examples. Furthermore, the sum of the examples 

along a row 𝑖 represent the total number of examples which in reality are labelled as class 𝑖 

while the sum of examples along a column 𝑗 represent the total number of examples that were 

predicted to be of class 𝑗. 

 

Usually, a Confusion Matrix 𝑪(𝑓) measures the performance of a single model 𝑓 obtained 

from a fixed learning algorithm. However, when only a small dataset is available it may be 

necessary to resample the available data, creating multiple pairs of training and test sets, in 

which case the Confusion Matrix would represent the combined performance over the 

different pairs. It is also possible for the different entries of the Confusion Matrix to represent 

not only the performance over the different test sets but also over different models obtained 

from different learning algorithms. 

 

3.6.2 Error Rate 

 

The Error Rate 𝑅𝑇(𝑓) is a performance metric that returns the ratio of misclassified examples 

to the complete set of examples comprised in a dataset. 
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𝑅𝑇(𝑓) =
1

𝑇
∑ 𝐼(𝑦𝑖 ≠ 𝑓(𝑥𝑖))𝑇

𝑖=1   (3.37) 

where the indicator function 𝐼(𝑎) returns a value of 1 if the condition 𝑎 is true, and 0 when 

this is not the case. 

Considering the previous definition of the Confusion Matrix, expression (3.37) can also be 

written in the form of equation (3.38) for the more general case of multiclass tasks and in the 

form of equation (3.39) for binary classification problems. 

 

𝑅𝑇(𝑓) =
∑ ∑ 𝑐𝑖𝑗(𝑓)𝑙

𝑗=1;𝑖≠𝑗
𝑙
𝑖=1

∑ ∑ 𝑐𝑖𝑗(𝑓)𝑙
𝑗=1

𝑙
𝑖=1

=
∑ ∑ 𝑐𝑖𝑗(𝑓)𝑙

𝑗=1
𝑙
𝑖=1 −∑ 𝑐𝑖𝑖(𝑓)𝑙

𝑖=1

∑ ∑ 𝑐𝑖𝑗(𝑓)𝑙
𝑗=1

𝑙
𝑖=1

  (3.38) 

 

𝑅𝑇(𝑓) =
𝐹𝑁+𝐹𝑃

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (3.39) 

3.6.3 Accuracy 

 

The accuracy 𝐴𝑐𝑐𝑇(𝑓) is the ratio of correctly labelled examples, positive and negative, to the 

total amount of available examples, and can thus be understood as the complementary of the 

Error Rate. 

 

𝐴𝑐𝑐𝑇(𝑓) =
1

𝑇
∑ 𝐼(𝑦𝑖 = 𝑓(𝑥𝑖))𝑇

𝑖=1 =
∑ 𝑐𝑖𝑖(𝑓)𝑙

𝑖=1

∑ ∑ 𝑐𝑖𝑗(𝑓)𝑙
𝑗=1

𝑙
𝑖=1

  (3.40) 

 

𝐴𝑐𝑐𝑇(𝑓) =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (3.41) 

 

Together with the Error Rate, Accuracy gives a perspective of the overall performance of the 

model being evaluated, considering the full range of classes involved in the problem. These 

however don’t reflect the importance that particular classes may have in the task being 

undertaken. Moreover, the two above mentioned metrics give better information when the 

dataset has a balanced distribution among the different classes, opposed to when some 

particular classes are represented by a considerably larger number of examples, in which case, 

a biased result, influenced by the more-prevalent class is obtained. 

 

3.6.4 Precision 

 

Precision 𝑃𝑟𝑒𝑐𝑖(𝑓) or Positive Predictive Value 𝑃𝑃𝑉𝑖(𝑓) is a metric that can be understood as 

the ratio of examples that were correctly labelled as being of class 𝑖 to the total amount of 

examples which were classified as being of this particular class, and thus, Precision enables 

the comprehension of how precise the model is in classifying the examples of a given class. 

For multiclass tasks this can be represented as, 
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𝑃𝑟𝑒𝑐𝑖(𝑓) = 𝑃𝑃𝑉𝑖(𝑓) =
𝑐𝑖𝑖(𝑓)

∑ 𝑐𝑗𝑖(𝑓)𝑙
𝑗=1

  (3.42) 

while for the particular case of binary classification tasks, 

 

𝑃𝑟𝑒𝑐(𝑓) = 𝑃𝑃𝑉(𝑓) =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (3.43) 

 

3.6.5 Recall 

 

Recall, usually known as Sensitivity or True Positive Rate 𝑇𝑃𝑅𝑖(𝑓), returns the ratio of the 

examples that were labelled by the classifier as being of class 𝑖 to the total amount of 

examples which actually belong to the class being surveyed. 

 

𝑅𝑒𝑐𝑖(𝑓) = 𝑇𝑃𝑅𝑖(𝑓) =
𝑐𝑖𝑖(𝑓)

∑ 𝑐𝑖𝑗(𝑓)𝑙
𝑗=1

  (3.44) 

 

 

𝑅𝑒𝑐(𝑓) = 𝑇𝑃𝑅(𝑓) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (3.45) 

 

3.6.6 F measures 

 

The different F measures, combine both Precision and Recall into a single metric by means of 

a weighted harmonic mean which in its most general form can be represented as, 

 

𝐹𝛽 =
(1+𝛽2)(𝑃𝑟𝑒𝑐(𝑓)∗𝑅𝑒𝑐(𝑓))

(𝛽2∗𝑃𝑟𝑒𝑐(𝑓))+𝑅𝑒𝑐(𝑓)
  (3.46) 

 

where 𝛽 ∈  ℝ with 𝛽 > 0. 

 

The F1 score, with 𝛽 = 1, takes into account both Precision and Recall evenly (3.47), while 

the F2 score for its turn doubles the weight of recall in comparison to precision (3.48). 

 

 

𝐹1 =
2(𝑃𝑟𝑒𝑐(𝑓)∗𝑅𝑒𝑐(𝑓))

𝑃𝑟𝑒𝑐(𝑓)+𝑅𝑒𝑐(𝑓)
  (3.47) 

 

𝐹2 =
5(𝑃𝑟𝑒𝑐(𝑓)∗𝑅𝑒𝑐(𝑓))

(4∗𝑃𝑟𝑒𝑐(𝑓))+𝑅𝑒𝑐(𝑓)
  (3.48) 
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3.6.7 Root-mean-squared-error 

 

The root-mean-squared-error (RMSE) is the most widely used metric for the assessment of 

regression tasks and can be defined as the root of the averaged squared distance between the 

predicted value and the actual value. 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖−𝑓(𝑥𝑖))2𝑛

𝑖=1

𝑛
  (3.49) 

 

where 𝑦𝑖 is the actual value of the example, 𝑓(𝑥𝑖) is the corresponding predicted value and 𝑛 

is the total number of available examples. 

 

3.6.8 Mean absolute percentage error 

 

The mean absolute percentage error (MAPE) is obtained by first determining the error of the 

predicted value in comparison to the actual value. The error is then transformed into a 

percentage of the actual value and an average of the errors of the various examples is then 

obtained and can be represented by equation 3.50. 

 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑

|𝑦𝑖−𝑓(𝑥𝑖)|

|𝑦𝑖|
𝑛−1
𝑖=0   (3.50) 

 

3.7 Summary 

 

In this Chapter were presented the most common types of problems and the different 

algorithms frequently used for their resolution as well as some of the evaluation metrics 

available for the analysis of the suitability of the created models. The application of these 

techniques to the proposed problem as well as the evaluation of the obtained results is 

presented in the following Chapters. 
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4 Proposed Approach 

 

This chapter presents the proposed approach to tackle the problem of designing unreinforced 

welded beam to column connections using machine learning techniques. As mentioned 

previously in chapter 1, this problem will be divided into two different problems. A 

classification problem to identify the conditioning component and a regression problem to 

obtain the corresponding design resistant bending moment. 

 

Considering the current procedure followed for the design of steel joints, the need to repeat 

this same process for a large set of similar connections within a single project as well as the 

large number of existing data related to previously validated examples, makes the application 

of machine learning techniques an interesting approach to transform this procedure into an 

easier and faster one. 

 

The application of these methods to the design of steel connections and the corresponding 

validation of its results make the obtention of a dataset, as well as the development of 

different models an essential part of this work. 

 

 

Figure 4.1 – Proposed workflow  

 

The workflow used for the development of the proposed work presented on Figure 4.1 was 

based upon the Machine Learning workflow of Figure 3.3.  

 

The process of creating and augmenting the dataset as well as its division into two different 

sets used for the two proposed problems (Classification and Regression) are fitted into 

Chapter 4.1 “Dataset Generation”. The procedures followed to train the different models and 

the analysis of the obtained results based upon the respective tests are presented in Section 4.2 

and Chapter 5. 
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4.1 Dataset generation 

 

The development of the proposed work depends necessarily on the creation of a dataset 

composed of a significant volume of examples that are representative of the type of 

unreinforced welded connections that practitioners are faced with in their work. Taking into 

account the difficulty in constructing a dataset with real examples developed during the 

design of buildings or other structures, namely due to the need of consent to use this data from 

the different parts involved for each of the different projects, a different approach was 

followed. This approach was implemented through the development of a simple script, using 

everyday tools such as Excel and Visual Basic for Applications (VBA), for the design of 

welded beam to column connections accordingly to EN 1993-1-1 and EN 1993-1-8, 

considering a wide range of European I and H sections and. 

 

Considering that one of the objectives is to construct the dataset to represent the widest range 

of I or H sections, including welded built-up sections, its development was made considering 

that the inputs to be fed to the different learning algorithms should comprise geometric 

characteristics that are not only analogous among the different sections but that also translate 

in some degree their resistance. Thus, a total of 8 different geometric characteristics, 

represented as real-valued numbers, for both the beam and column were considered. 

 

 ℎ𝑏 the height of the beam 

 𝑏𝑏 the width of the beam 

 𝑡𝑤𝑏 the thickness of the beam’s web 

 𝑡𝑓𝑏 the thickness of the beam’s flange 

 ℎ𝑐 the height of the column 

 𝑏𝑐 the width of the column 

 𝑡𝑤𝑐 the thickness of the column’s web 

 𝑡𝑓𝑐 the thickness of the column’s flange 

 

In addition to the 8 features comprising each example, 2 different outputs were considered. 

The first, to be used in classification problems, corresponds to the governing component, the 

one that limits the connection’s resistance for the different examples. Taking into account the 

interest in determining the resistance of an unreinforced welded connection given the sections 

of the beam and column, a second output, consisting of a real-valued number, which 

represents the resistance of the connection due to its weakest component was considered, 

allowing for the development of regression analysis. Both outputs were obtained considering 

the same S355 steel grade for both the column and beam elements. 
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Due to the different nature of both outputs, the original dataset was split into two distinct 

datasets, both with the same number of examples and features but each with its corresponding 

output. 

 

The flowchart represented in Figure 4.1 shows the algorithm developed and implemented for 

the creation of the dataset. 

The first step consists in assigning a section for the beam 𝑏𝑖 to be connected which can be 

characterized by the dimensions ℎ𝑏𝑖, 𝑏𝑏𝑖, 𝑡𝑤𝑏𝑖 and 𝑡𝑓𝑏𝑖. Once the beam section has been 

defined, one proceeds to the definition of the column’s section 𝑐𝑗 which is characterized by its 

respective dimensions ℎ𝑐𝑗, 𝑏𝑐𝑗, 𝑡𝑤𝑐𝑗 and 𝑡𝑓𝑐𝑗. 

 

For each pair beam-column, a set of limits are considered for the ratios ℎ𝑏𝑖/ℎ𝑐𝑗 and 𝑏𝑏𝑖/𝑏𝑐𝑗, 

in order to avoid unrealistic beam-column pairs. The assumed limitations are as follows. 

 

 𝑏𝑏𝑖 ≤ 𝑏𝑐𝑗 

 𝑏𝑏𝑖 ≥ 0.5𝑏𝑐𝑗 

 ℎ𝑏𝑖 ≤ 2ℎ𝑐𝑗 

 ℎ𝑏𝑖 ≥ 0.5ℎ𝑐𝑗 

 

In case any of the above-mentioned conditions are not met, the pair in analysis is discarded 

and the following column section is considered. If all 𝑐𝑗 sections were previously considered, 

a new cycle begins with a new beam section. 

Otherwise, if all the conditions are respected, the algorithm assigns the null value to the 

design bending moment acting on the beam 𝑀𝐸𝑑,𝑏 = 0, and an increment of bending moment 

𝑀𝑅𝑑,𝑠𝑡𝑒𝑝 corresponding to 1% of the smaller resistant bending moment between the beam and 

the column sections is considered 𝑀𝑅𝑑,𝑚𝑖𝑛 = min (𝑀𝑅𝑑,𝑏𝑖; 𝑀𝑅𝑑,𝑐𝑗). The design bending 

moment 𝑀𝐸𝑑,𝑏 is then successively incremented, as well as the bending moment acting in the 

column above and below the beam which as a simplification, is assumed to be 𝑀𝐸𝑑,𝑐 =
𝑀𝐸𝑑,𝑏

2
. 

 

In each cycle 𝑛 for which the design bending moments are incremented, the algorithm 

engages in an analysis of the utilization ratio 𝑅𝑛 of the different components of the 

connection, except for the flange welds component, as it is assumed that these are full strength 

and thus do not govern the resistance of the connection. The cycle ends when the ratio 𝑅𝑛 ≥

1, in which case the governing component is determined as well as its corresponding 

resistance in the form of the maximum bending moment that may act on the beam, 𝑀𝑅𝑑,𝑏 =
𝑀𝐸𝑑,𝑏 𝑛

𝑅𝑛
. 
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Figure 4.2 – Dataset generation flowchart – 9079 datapoints 
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This process is then repeated for the different beam-column pairs, allowing for a total 

of 9079 different combinations. Figure 4.2 represents the distribution of the obtained 

beam-column pairs in a 2D plot with the beam height ℎ𝑏 in the abscissa and the 

column height ℎ𝑐 in the ordinate axis. From the analysis of this plot one can highlight 

the clear distinction of the upper and lower limits introduced by the constraints 

ℎ𝑏𝑖 ≤ 2ℎ𝑐𝑗 and ℎ𝑏𝑖 ≥ 0.5ℎ𝑐𝑗. Furthermore, the dataset as the appearance of an 

artificially created one, reflected mainly by the organized distribution of the examples. 

 

 

Figure 4.3 – Dataset visualization – Beam height vs Column height 

 

In order to increase the number of data points comprising the dataset and giving it a 

more disperse and realistic distribution of examples, a new set of 10 beam-column 

pairs with dimensions ℎ∗, 𝑏∗, 𝑡𝑤∗ and 𝑡𝑓∗ was obtained from each one of the previous 

9079 combinations as represented on the flowchart of Figure 4.3. This procedure was 

based upon the ratio of the mean to nominal dimensions of the different sections and 

their corresponding coefficient of variation (c.o.v), which by considering a normal 

distribution allowed to obtain a total of 99849 different beam-column configurations 

distributed among 3 different classes, Column Flange in bending, Compression Web 

and Web Shear. 

 

Dimension 𝑏 ℎ 𝑡𝑤 𝑡𝑓 

mean/nominal 1 1 1 0.98 

c.o.v 0.9% 0.9% 2.5% 2.5% 
 

Table 4.1 – Standard steel sections dimensional distribution 
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Figure 4.4 – Dataset generation flowchart – 99849 data points 
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From the analysis of Figure 4.4, it is noticeable, the increased number of data points and their 

more disperse distribution. 

 

 

Figure 4.5 – Dataset visualization – Beam height [mm] (abscissa) vs Column height [mm] 

(ordinate) 

 

4.2 Model creation and validation 

 

Once the dataset has been obtained, it becomes necessary to define the best approach to be 

followed in order to apply the different learning algorithms. Thus, and taking into account its 

versatility and its rising popularity amongst the Machine Learning community, programming 

language Python was chosen to be the default one for the development of this work. 

Moreover, the different pre-processing operations needed, the different learning algorithms 

used as well as the different evaluation metrics used for their validation were implemented by 

means of open source Machine Learning library sklearn². 

 

 

 

 

 

 

 

 

 

 

 

 

 

² https://scikit-learn.org/ 

Compression Web 

Web Shear 

Column Flange in bending 

 

https://scikit-learn.org/
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5 Results and Analysis 

 

This chapter is divided in three parts. The first addresses the Exploratory Data Analysis 

(EDA) which is commonly applied before any learning technique, while the last two 

correspond to the classification and regression tasks undertaken by applying different learning 

algorithms, and by varying the corresponding hyperparameters as well as the number of input 

features. 

 

5.1 Exploratory Data Analysis 

 

The process of Exploratory Data Analysis is usually undertaken for the development of an 

early analysis of the available dataset, previously to the application of any machine learning 

technique. This procedure allows the determination of specific characteristics such as patterns 

or anomalies that may be, at first sight at least, hidden within the dataset and that may be 

initially disclosed by means of techniques such as the graphic visualization of the dataset. 

 

Figure 5.1 – Feature Correlation 

The development of this analysis was made by means of different software. Initially, in order 

to obtain the 2D representations of the dataset, the well-known Weka³ software was used. The 

will to further develop this analysis, by obtaining also 3D plots, led to the use of Matlab. 

 

Figure 5.1, obtained by means of the Python programming language run within GoogleColab⁴ 

, presents the correlation matrix of the 8 considered features. As it can be seen, the diagonal 

elements relate the different features with themselves, leading to a full correlation, with a 

value of 1.  

 

³ https://www.cs.waikato.ac.nz/~ml/weka/  

⁴ https://colab.research.google.com/  

https://www.cs.waikato.ac.nz/~ml/weka/
https://colab.research.google.com/
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It should also be mentioned the high correlation obtained between the web and flange 

thicknesses of both the columns and the beams, respectively 0.97 and 0.98. The difference 

between the two values is a result of not considering exclusively the standard dimensions of 

the different sections but also those that despite being based upon their standard counterparts, 

were obtained by means of a normal distribution. 

The second highest obtained correlation (0.79) refers to the column height and its width. This 

reduction, when compared to the previously mentioned correlations, is a result of the 

consideration of sections such as HEA and HEB type sections. The width of these sections 

increase along with the increase of its height until a certain dimension is reached. Once the 

threshold dimension is met, the height of section continues to increase while the 

corresponding width remains constant. 

The obtainment of the correlation matrix can be used as a support for the feature engineering 

process undertaken for the different learning algorithms, enabling an informed choice of the 

features to be successively discarded.   

 

 

Figure 5.2 – 2D Dataset visualization – Beam width [mm] (abscissa) vs Column width [mm] 

(ordinate) 

The obtainment of relevant results throughout the graphic visualization process depends upon 

the choice of the different inputs to relate. Figure 5.2 presents the set of data points by means 

of a 2D plot with the beam width values and the column width in the abscissa and ordinate, 

respectively. Also, the distribution of the different points with respect to the conditioning 

component is displayed, blue for the column compression web, green for the column Flange 

in bending and red for the column web shear. From the analysis of Figure 5.2, it is not 

possible to extract meaningful information due to the dispersion and superposition of data 

points of different classes. Despite this, it should be mentioned the graphical visualization of 

the previously mentioned imposed limits to the ℎ𝑏𝑖/ℎ𝑐𝑗 and 𝑏𝑏𝑖/𝑏𝑐𝑗 ratios and the fact that the 

considered sections do not possess a continuous range of widths, with the absence of the 

[315;420]mm range.  

 

Compression Web 

Web Shear 

Column Flange in bending 
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Figure 5.3 – 3D Dataset visualization – Beam width [mm] (abscissa) vs Column width [mm] 

(ordinate) vs Column web thickness [mm] (applicate) 

Using the representation presented in Figure 5.2 as a basis, and considering an additional 

feature, in this case, the column web thickness, it is possible to obtain the 3D plot of Figure 

5.3, in which it is possible to notice not only the same range of missing widths [315,420]mm 

but also an improvement in the separation between classes, a direct result of considering an 

extra dimension for the representation of the dataset. 

 

The use of a 3D representation of the dataset allows not only a better general idea of the 

distribution of classes but also the representation of the distribution of the resistance of the 

different beam-column pairs as a function of their respective conditioning component, by 

considering this resistance in the applicate axis. 

 

Figure 5.4 – 3D Dataset visualization – Beam width [mm] (abscissa) vs Column width [mm] 

(ordinate) vs Mrd [kN.m] (applicate) 

Compression Web 

Web Shear 

Column Flange in bending 
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Figure 5.5 – 2D Dataset visualization – Column flange thickness [mm] (abscissa) vs Column 

web thickness [mm] (ordinate) 

 

Considering the plot presented in Figure 5.5, with the abscissa and ordinate axis representing 

respectively the column flange thickness and the column web thickness, it is noticeable an 

improvement translated by a clearer transition zone between two classes, the column 

compression web and the column flange in bending, while the third class however remains 

considerably disperse. 

 

The separation between the two previously mentioned classes is a result of the influence of 

smaller column web thickness in the resistance of the connection, while the increase of this 

thickness leads to the change of the connection’s resistance governing factor and thus to the 

corresponding conditioning component. 

 

Compression Web 

Web Shear 

Column Flange in bending 
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Figure 5.6 – 3D Dataset visualization – Column flange thickness [mm] (abscissa) vs Column 

web thickness [mm] (ordinate) vs Beam flange thickness [mm] (applicate) 

 

 

 

 

Figure 5.7 – 3D Dataset visualization – Column flange thickness [mm] (abscissa) vs Column 

web thickness [mm] (ordinate) vs Mrd [kN.m] (applicate) 
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Figure 5.8 – 2D Dataset visualization – Beam height [mm] (abscissa) vs Column web 

thickness [mm] (ordinate) 

 
The dataset is represented in Figures 5.8 and 5.11 respectively, by means of the pairs of 

features beam height (abscissa) and column web thickness (ordinates) and beam flange 

thickness (abscissa) and column web thickness (ordinates). 

 

In the first 2D plot, the transition zone between the conditioning components presents itself 

less strict, with a superposition of the two components, column web compression and column 

flange in bending as well as with the web shear component. 

From the connection’s structural behaviour point-of-view, as it would be expected, smaller 

column web thicknesses govern the column web compression component. The obtained 

correlation between beam height and beam flange thickness (0.74), suggests that for a 

considerable part of cases, the increase in the beam’s height leads to the corresponding 

increase of the beam’s flange thickness and thus to it resistance. Thus, considering a constant 

column web thickness, the successive increase of the beam’s height leads to a change in the 

conditioning component, from the column flange in bending component (for smaller beam 

flange thicknesses) to the column web compression (for larger beam flange thicknesses). 

 

Compression Web 

Web Shear 

Column Flange in bending 
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Figure 5.9 – 3D Dataset visualization – Beam height [mm] (abscissa) vs Column web 

thickness [mm] (ordinate) vs  Beam flange thickness [mm] (applicate) 

 

 

 
Figure 5.10 – 2D Dataset visualization – Beam height [mm] (abscissa) vs Column web 

thickness [mm] (ordinate) vs Mrd [kN.m] (applicate) 

 
In the second plot, the one in Figure 5.11, the transition zone between the column web 

compression and beam flange compression appears more clear, less blurred, suggesting that 

the features adopted for this representation of the dataset, and in particular the beam flange 

thickness, are more adequate, and are thus a more proper indirect measure of the beam’s 

resistance. 
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Figure 5.11 – 2D Dataset visualization – Beam flange thickness [mm] (abscissa) vs Column 

web thickness [mm] (ordinate) 

 

 

 
Figure 5.12 – 2D Dataset visualization – Beam flange thickness [mm] (abscissa) vs Column 

web thickness [mm] (ordinate) vs Mrd [kN.m] (applicate) 

 
Once more, the consideration of an increased number of dimensions, between the 2D plots of 

Figures 5.8 and 5.11 and their respective 3D counterparts in Figures 5.9, 5.10 and 5.12 

appears to return clearer separation boundaries between the different classes considering the 

same base features in the abscissa and ordinate axis. 
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Figure 5.13 – Dataset visualization – Beam flange thickness [mm] (abscissa) vs  

Column height/Column web thickness ratio  (ordinate) 

 
In an attempt to introduce a third feature in a 2D plot and a fourth feature in a 3D 

representation of the dataset that would allow for a better representation of the web shear 

component, a “temporary” input was considered. Considering the influence of both the 

column height and the column web thickness in the resistance of this particular component, 

the ratio column height/column web thickness was considered. 

As it can be seen from Figure 5.13 and 5.14, despite some superposition between data points 

of different classes, the obtained transition zone between web shear and two remaining 

components is now much clear. 

It is noticeable that for lower column height to column web thickness ratios, the design 

resistance of the connection is governed by web shear, except for smaller beam heights. 

 
Figure 5.14 – Dataset visualization – Beam flange thickness [mm] (abscissa) vs  

Column height/Column web thickness ratio  (ordinate) vs Beam width [mm] (applicate) 
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5.2 Component Classification 

 

In order to address the classification task, in which the conditioning component is to be 

predicted, four different learning algorithms have been selected, namely, Decision Trees, k-

Nearest Neighbors, Support Vector Machines and Neural Networks. 

 

Before applying any of the above-mentioned learning algorithms, the dataset was split into a 

training set and a testing set in a 70/30 proportion. 

Once these datasets, comprised by all 8 features were obtained, it was possible to obtain new 

pairs of training sets and testing sets by successively eliminating specific features in order to 

evaluate their influence in the learning algorithms behaviour.  

 

5.2.1 Decision Trees 

 

The use of Decision Trees for the classification task was made by means of the sklearn library 

function DecisionTreeClassifier(), allowing not only a graphic representation of the decision 

path but also the obtainment of its full depth, the total number of leaves as well as the 

obtained precision, recall and F1-score for the three classes as well as the overall accuracy of 

the model. 

 

Table 5.1 presents the confusion matrix obtained considering the dataset with all 8 previously 

mentioned features. The corresponding Decision Tree is represented graphically in Figures 

5.15 and 5.16, the first showing the first two decision nodes and the latter the first four nodes. 

 

Component 

Prediction Value 

Column Flange 

in bending 

Compression 

Web 
Web Shear 

Actual Value 

Column Flange in 

bending 
10203 397 90 

Compression 

Web 
351 16509 110 

Web Shear 93 91 2112 
 

Table 5.1 – Decision Tree Classifier - Confusion matrix – Test set with all 8 features 

 

From the analysis of the Confusion Matrix, it is possible to conclude that from the 10690 

(10203+397+90) examples that correspond effectively to the Column Flange in bending class, 

10203 are correctly classified. Following further down along the confusion matrix diagonal, 

on verifies that from the 16970 (351+16509+110) Compression Web datapoints, 16509 are 

correctly predicted as such and 2112 are correctly classified as Web Shear amongst a total of 

2296. 
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Figure 5.15 – Decision tree Classifier (first two nodes) – Test set with all 8 features 

 

A new confusion matrix, also obtained following the use of Decision Tree, is presented in 

Table 5.2. This matrix, contrarily to what was considered for the matrix presented in Table 

5.1, does not consider all the features, instead 5 features were removed, namely, beam height 

ℎ𝑏 and web thickness 𝑡𝑤𝑏, column height ℎ𝑐 and width 𝑏𝑐 as well as the column flange 

thickness 𝑡𝑓𝑐. 

 

Component 

Prediction Value 

Column Flange 

in bending 

Compression 

Web 
Web Shear 

Actual Value 

Column Flange in 

bending 
9861 511 318 

Compression 

Web 
466 15367 1137 

Web Shear 345 1082 869 
 

Table 5.2 –  Decision Tree Classifier - Confusion matrix – Test set without beam height ℎ𝑏 

and web thickness 𝑡𝑤𝑏, column height ℎ𝑐, width 𝑏𝑐 and flange thickness 𝑡𝑓𝑐 

 

Analyzing the confusion matrix in Table 5.2 and comparing it to the one from Table 5.1, it is 

noticeable the general decrease in correctly classified examples, in particular the ones related 

to the Web Shear class, the one with the smaller amount of datapoints. 

 

Column Flange in bending Precision Recall F1-score Support 

With all 8 features 0.96 0.96 0.96 

10690 Without ℎ𝑏, 𝑡𝑤𝑏, 𝑏𝑐, 𝑡𝑓𝑐 0.96 0.96 0.96 

Without ℎ𝑏, 𝑡𝑤𝑏, ℎ𝑐, 𝑏𝑐, 𝑡𝑓𝑐 0.92 0.92 0.92 
 

Table 5.3 – Decision Tree Classifier - Comparison of Column Flange in bending Precision, 

Recall and F1-score 
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Compression Web Precision Recall F1-score Support 

With all 8 features 0.97 0.97 0.97 

16970 Without ℎ𝑏, 𝑡𝑤𝑏, 𝑏𝑐, 𝑡𝑓𝑐 0.97 0.97 0.97 

Without ℎ𝑏, 𝑡𝑤𝑏, ℎ𝑐, 𝑏𝑐, 𝑡𝑓𝑐 0.91 0.91 0.91 
 

Table 5.4 – Decision Tree Classifier -  Comparison of Column Flange in bending Precision, 

Recall and F1-score 

 

Web Shear Precision Recall F1-score Support 

With all 8 features 0.92 0.93 0.92 

2296 Without ℎ𝑏, 𝑡𝑤𝑏, 𝑏𝑐, 𝑡𝑓𝑐 0.93 0.93 0.93 

Without ℎ𝑏, 𝑡𝑤𝑏, ℎ𝑐, 𝑏𝑐, 𝑡𝑓𝑐 0.38 0.38 0.38 
 

Table 5.5 – Decision Tree Classifier - Comparison of Column Flange in bending Precision, 

Recall and F1-score 

 

Throughout tables 5.3 to 5.5, three different evaluation metrics, related specifically to each 

one of the existing classes are presented, namely Precision, Recall and F1-score. The variation 

of these metrics with the variation of the number of considered features is also presented in 

each table. It should be mentioned the good overall results obtained for the different classes 

while considering the 8 features, as well as the steep decrease of the different metrics for the 

Web Shear component after the removal of the column height feature ℎ𝑐. 

 

 Accuracy Support 

With all 8 features 0.96 

29956 Without ℎ𝑏, 𝑡𝑤𝑏, 𝑏𝑐, 𝑡𝑓𝑐 0.96 

Without ℎ𝑏, 𝑡𝑤𝑏, ℎ𝑐, 𝑏𝑐, 𝑡𝑓𝑐 0.87 
 

Table 5.6 – Decision Tree Classifier - Comparison of Accuracy 

 

5.2.2 k-Nearest Neighbors 

 

The implementation of the k-Nearest Neighbors (kNN) algorithm was achieved through the 

KNeighborsClassifier() function. This function presents as its main parameter the number of k 

neighbour examples to be considered in the voting process for the classification of a 

previously unseen datapoint. 

 

In order to verify the suitability of the application of the kNN algorithm to the design of steel 

connections and in particular to the classification of the conditioning component, a sensitivity 

analysis was developed by essentially varying the number of k neighbour examples. 



Machine learning techniques in connection design  5 Results 

 

 

 

74 

 

 

Tables 5.7, 5.8, 5.9 and 5.10 present different confusion matrixes obtained respectively for 

k=1,3,5 and 7.  

 

 

Component 

Prediction Value 

Column Flange 

in bending 

Compression 

Web 
Web Shear 

Actual Value 

Column Flange in 

bending 
10110 523 57 

Compression 

Web 
449 16385 136 

Web Shear 71 120 2105 
 

Table 5.7 – kNN Classifier - Confusion matrix – Test set with all 8 features and k=1 

 

 

Component 

Prediction Value 

Column Flange 

in bending 

Compression 

Web 
Web Shear 

Actual Value 

Column Flange in 

bending 
10011 614 65 

Compression 

Web 
484 16346 140 

Web Shear 92 120 2084 
 

Table 5.8 –  kNN Classifier - Confusion matrix – Test set with all 8 features and k=3 

 

 

Component 

Prediction Value 

Column Flange 

in bending 

Compression 

Web 
Web Shear 

Actual Value 

Column Flange in 

bending 
9892 738 60 

Compression 

Web 
529 16313 128 

Web Shear 107 149 2040 
 

Table 5.9 – kNN Classifier - Confusion matrix – Test set with all 8 features and k=5 
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Component 

Prediction Value 

Column Flange 

in bending 

Compression 

Web 
Web Shear 

Actual Value 

Column Flange in 

bending 
9735 882 73 

Compression 

Web 
567 16270 133 

Web Shear 127 191 1978 
 

Table 5.10 – kNN Classifier - Confusion matrix – Test set with all 8 features and k=7 

 

From the analysis of these matrixes together with the Precision, Recall and F1-score metrics 

presented in table 5.11 throughout 5.13, it is noticeable that good results can be achieved by 

considering the single closest k=1 example, while an increase in the number of considered 

neighbours leads to a general decrease in the quality of the results, which is also supported by 

the reduction in the overall Accuracy presented in Table 5.14. 

 

Column Flange in bending Precision Recall F1-score Support 

k=1 0.95 0.95 0.95 

10690 
k=3 0.95 0.94 0.94 

k=5 0.94 0.93 0.93 

k=7 0.93 0.91 0.92 
 

Table 5.11 – kNN Classifier - Comparison of Column Flange in bending Precision, Recall 

and F1-score 

 

Compression Web Precision Recall F1-score Support 

k=1 0.96 0.97 0.96 

16970 
k=3 0.96 0.96 0.96 

k=5 0.95 0.96 0.95 

k=7 0.94 0.96 0.95 
 

Table 5.12 – kNN Classifier - Comparison of Column Flange in bending Precision, Recall 

and F1-score 

 

Web Shear Precision Recall F1-score Support 

k=1 0.92 0.92 0.92 

2296 
k=3 0.91 0.91 0.91 

k=5 0.92 0.89 0.90 

k=7 0.91 0.86 0.88 
 

Table 5.13 – kNN Classifier - Comparison of Web Shear Precision, Recall and F1-score 
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 Accuracy Support 

k=1 0.95 

29956 
k=3 0.95 

k=5 0.94 

k=7 0.93 
 

Table 5.14 – kNN Classifier - Comparison of Accuracy 

 

5.2.3 Support Vector Machines – Linear Kernel 

 

The application of learning algorithms known as Support Vector Machine (SVM) to the 

classification problem being undertaken was initially made using the linear kernel. In order to 

do so, the SVC() function of the sklearn library was considered. 

Previously to the use of the SVC() function it was necessary to engage in a standardization 

process of the different considered features, a process made possible by means of the 

StandardScaler() function applied to the trainingset. The parameters of the standardization of 

the trainingset were then later used for the standardization of the examples that compose the 

testset. Once both dataset are standardized, it was possible to develop an analysis that would 

allow a deeper understanding of the suitability of this learning algorithm to the proposed 

problem, namely by varying the c parameter, defined as the regularization parameter. A 

decrease of c leads to a larger regularization and hence to a larger margin at the cost of some 

accuracy. 

 

Component 

Prediction Value 

Column Flange 

in bending 

Compression 

Web 
Web Shear 

Actual Value 

Column Flange in 

bending 
10121 471 98 

Compression 

Web 
369 16502 99 

Web Shear 146 78 2072 
 

Table 5.15 – SVM Linear Kernel Classifier - Confusion matrix –Test set with all 8 features 

and c=1 

 

Table 5.15 presents the confusion matrix for the dataset containing all 8 features and 

assuming the unit value for the regularization parameter c=1. 
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Column Flange in bending Precision Recall F1-score Support 

c=0.001 0.92 0.83 0.88 

10690 

c=0.01 0.95 0.93 0.94 

c=0.1 0.95 0.94 0.95 

c=1 0.95 0.95 0.95 

c=10 0.95 0.95 0.95 

c=100 0.95 0.95 0.95 

c=1000 0.95 0.95 0.95 
 

Table 5.16 – SVM Linear Kernel Classifier -  Comparison of Column Flange in bending 

Precision, Recall and F1-score 

 

Compression Web Precision Recall F1-score Support 

c=0.001 0.86 0.98 0.92 

16970 

c=0.01 0.93 0.98 0.95 

c=0.1 0.96 0.98 0.97 

c=1 0.97 0.97 0.97 

c=10 0.97 0.97 0.97 

c=100 0.97 0.97 0.97 

c=1000 0.97 0.97 0.97 
 

Table 5.17 – SVM Linear Kernel Classifier - Comparison of Compression Web Precision, 

Recall and F1-score 

 

Web Shear Precision Recall F1-score Support 

c=0.001 0.88 0.35 0.50 

2296 

c=0.01 0.93 0.66 0.77 

c=0.1 0.92 0.87 0.89 

c=1 0.91 0.90 0.91 

c=10 0.91 0.91 0.91 

c=100 0.91 0.91 0.91 

c=1000 0.91 0.91 0.91 
 

Table 5.18 – SVM Linear Kernel Classifier - Comparison of Web Shear Precision, Recall 

and F1-score 

 

Tables 5.16 throughout 5.18 present the Precision, Recall and F1-score metrics for each 

observed class as well as its variation with the regularization parameter. It should be noticed 

the slight increase of the quality of the results along with the increase of the regularization 

parameter, at least until c approaches the unit value (c=1). 
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 Accuracy Support 

c=0.001 0.88 

29956 

c=0.01 0.94 

c=0.1 0.96 

c=1 0.96 

c=10 0.96 

c=100 0.96 

c=1000 0.96 
 

Table 5.19 – SVM Linear Kernel Classifier - Comparison of Accuracy 

 

5.2.4 Support Vector Machines – Radial Basis Function Kernel 

 

In addition to the analysis presented above considering a SVM with linear kernel, it was also 

possible, taking advantage of the same SVC() function, to develop an analysis considering 

however a Radial Basis Function (RBF). In addition to the regularization parameter 

mentioned previously for the case of the SVM with the linear kernel, the SVC() function 

assuming a Radial Basis Function allows also the definition of the additional parameter 𝛾, 

which can be understood as the parameter that defines the influence of a single example, thus 

while large values of 𝛾 correspond to small regions of influence which may lead to 

overfitting, the consideration of small values for this parameter may result in a model that is 

not capable of representing the complexity of the training examples. 

 

  

Component 

Prediction Value 

Column Flange 

in bending 

Compression 

Web 
Web Shear 

Actual Value 

Column Flange in 

bending 
10450 210 30 

Compression 

Web 
156 16732 82 

Web Shear 34 107 2155 
 

Table 5.20 – SVM RBF Kernel Classifier - Confusion matrix –Test set with all 8 features and 

c=10 and γ=10 

 

Table 5.20 presents the confusion matrix obtained considering the standardized dataset with 

all 8 features and assuming a value of 10 for both c and 𝛾 parameters. 

From the analysis of the above confusion matrix, it is possible to observe that the use of SVM 

learning algorithm considering a RBF leads to good overall results, especially for the case of 

the more represented classes such as in the case of Column Flange in bending and 

Compression Web. 



Machine learning techniques in connection design  5 Results 

 

 

 

79 

 

Column Flange in bending Precision Recall F1-score Support 

c=0.1 

γ=0.1 0.96 0.95 0.96 

10690 

γ=1 0.97 0.96 0.96 

γ=10 0.97 0.93 0.95 

c=1 

γ=0.1 0.98 0.97 0.97 

γ=1 0.98 0.98 0.98 

γ=10 0.98 0.97 0.98 

c=10 

γ=0.1 0.98 0.98 0.98 

γ=1 0.99 0.98 0.99 

γ=10 0.98 0.98 0.98 
 

Table 5.21 – SVM RBF Kernel Classifier - Comparison of Column Flange in bending 

Precision, Recall and F1-score 

 

Compression Web Precision Recall F1-score Support 

c=0.1 

γ=0.1 0.95 0.98 0.97 

16970 

γ=1 0.96 0.98 0.97 

γ=10 0.93 0.99 0.96 

c=1 

γ=0.1 0.97 0.99 .98 

γ=1 0.98 0.99 0.98 

γ=10 0.98 0.98 0.98 

c=10 

γ=0.1 0.98 0.99 0.99 

γ=1 0.99 0.99 0.99 

γ=10 0.98 0.99 0.98 
 

Table 5.22 – SVM RBF Kernel Classifier - Comparison of Compression Web Precision, 

Recall and F1-score 

Web Shear Precision Recall F1-score Support 

c=0.1 

γ=0.1 0.94 0.76 0.84 

2296 

γ=1 0.93 0.83 0.88 

γ=10 0.96 0.65 0.78 

c=1 

γ=0.1 0.94 0.88 0.91 

γ=1 0.94 0.91 0.92 

γ=10 0.94 0.92 0.93 

c=10 

γ=0.1 0.93 0.93 0.93 

γ=1 0.95 0.95 0.95 

γ=10 0.95 0.94 0.94 
 

Table 5.23 – SVM RBF Kernel Classifier - Comparison of Web Shear Precision, Recall and 

F1-score 
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Tables 5.21 and 5.22 show the results for the different considered metrics (Precision, Recall 

and F1-score) for the analysis of specific classes, in this case the Column Flange in bending 

and Compression Web classes respectively and their variation with both c and 𝛾 parameters. 

For these two classes the obtained results are very good, in particular when considering c=10 

and 𝛾=1. These results are also corroborated by the overall accuracy displayed on Table 5.24. 

 

 Accuracy Support 

c=0.1 

γ=0.1 0.95 

29956 

γ=1 0.96 

γ=10 0.94 

c=1 

γ=0.1 0.97 

γ=1 0.98 

γ=10 0.97 

c=10 

γ=0.1 0.98 

γ=1 0.98 

γ=10 0.98 
 

Table 5.24 – SVM RBF Kernel Classifier - Comparison of Accuracy 

 

5.2.5 Artificial Neural Networks 

 

The development of a model using Artificial Neural Networks (ANN) was made possible by 

means of the MLPClassifier() function. This function presents as its main inputs the number 

of hidden layers which will compose the network as well as the type of activation function 

being considered for this case the logistic sigmoid function. 

The stochastic gradient descent solver was considered leading to the need for the definition of 

other parameters such as the learning rate and the momentum and thus enabling the analysis 

of their influence on the obtained results. The number of times an example is used was also 

defined as an input, a parameter known as number of epochs. 
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Hidden Layers Neurons Class Precision 

 

1 

 

5 

Column Flange in bending 0.97 

Compression Web 0.98 

Web Shear 0.90 

10 

Column Flange in bending 0.98 

Compression Web 0.99 

Web Shear 0.90 

15 

Column Flange in bending 0.98 

Compression Web 0.99 

Web Shear 0.90 

2 

5 

Column Flange in bending 0.95 

Compression Web 0.99 

Web Shear 0.88 

10 

Column Flange in bending 0.96 

Compression Web 0.99 

Web Shear 0.88 

3 

5 

Column Flange in bending 0.97 

Compression Web 0.99 

Web Shear 0.88 

10 

Column Flange in bending 0.97 

Compression Web 0.99 

Web Shear 0.86 

4 

5 

Column Flange in bending 0.96 

Compression Web 0.99 

Web Shear 0.87 

10 

Column Flange in bending 0.97 

Compression Web 0.99 

Web Shear 0.86 

5 5 

Column Flange in bending 0.96 

Compression Web 0.95 

Web Shear 0.56 
 

Table 5.25 – ANN Classifier – Comparison of Networks 

 

The application of ANN to solve the proposed problem begun with a sensitivity analysis 

regarding the number of hidden layers as well as the number of neurons in each one of these 

layers and considering a fix learning rate and momentum of 0.3 and 0.2 respectively. Table 

5.25 shows that even considering a reduced number of hidden layers and neurons good results 

were achieved. However, an increased number of hidden layers led to a decrease in the quality 

of the results especially for the less represented classes, in this case the Web Shear class. 
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Component 

Prediction Value 

Column Flange 

in bending 

Compression 

Web 
Web Shear 

Actual Value 

Column Flange in 

bending 
10479 159 52 

Compression 

Web 
164 16667 139 

Web Shear 99 46 2151 
 

Table 5.26 – ANN Classifier - Confusion matrix –Test set with all 8 features and neural 

network with 3 hidden layers of 10 neurons each, a learning rate of 0.5 and a momentum of 

0.9 

 

Table 5.26 presents the obtained confusion matrix for a network composed of 3 hidden layers 

each one with 10 neurons and a learning rate and momentum of 0.5 and 0.9 respectively. 

Column Flange in bending Precision Recall F1-score Support 

L rate=0.1 

Momentum=0.1 0.97 0.98 0.98 

10690 

Momentum=0.5 0.98 0.98 0.98 

Momentum=0.9 0.98 0.98 0.98 

L rate=0.5 

Momentum=0.1 0.97 0.99 0.98 

Momentum=0.5 0.98 0.99 0.98 

Momentum=0.9 0.98 0.98 0.98 

L rate=0.9 

Momentum=0.1 0.97 0.98 0.98 

Momentum=0.5 0.98 0.98 0.98 

Momentum=0.9 0.98 0.97 0.98 
 

Table 5.27 – ANN Classifier - Comparison of Column Flange in bending Precision, Recall 

and F1-score 

 

Compression Web Precision Recall F1-score Support 

L rate=0.1 

Momentum=0.1 0.99 0.98 0.98 

16970 

Momentum=0.5 0.99 0.98 0.98 

Momentum=0.9 0.99 0.99 0.99 

L rate=0.5 

Momentum=0.1 0.99 0.98 0.99 

Momentum=0.5 0.99 0.98 0.99 

Momentum=0.9 0.99 0.98 0.98 

L rate=0.9 

Momentum=0.1 0.99 0.98 0.98 

Momentum=0.5 0.99 0.98 0.99 

Momentum=0.9 0.98 0.98 0.98 
 

Table 5.28 – ANN Classifier - Comparison of Compression Web Precision, Recall and F1-

score 
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Web Shear Precision Recall F1-score Support 

L rate=0.1 

Momentum=0.1 0.90 0.95 0.92 

2296 

Momentum=0.5 0.90 0.95 0.92 

Momentum=0.9 0.92 0.95 0.93 

L rate=0.5 

Momentum=0.1 0.90 0.95 0.93 

Momentum=0.5 0.91 0.95 0.93 

Momentum=0.9 0.92 0.94 0.93 

L rate=0.9 

Momentum=0.1 0.90 0.95 0.93 

Momentum=0.5 0.91 0.94 0.93 

Momentum=0.9 0.90 0.94 0.92 
 

Table 5.29 – ANN Classifier - Comparison of Web Shear Precision, Recall and F1-score 

 

For the sensitivity analysis regarding the variation of both the learning rate and the 

momentum the network used to obtain the confusion matrix of Table 5.25 was considered. 

Tables 5.27 throughout 5.29 present the obtained results for the different combinations, 

considering a learning rate and momentum which could take a value of 0.1, 0.5 or 0.9. 

From the analysis of the above mentioned tables it is possible to verify that the ANN learning 

algorithm led to overall good results, including the less represented class, which is still the 

one with the worst metrics.  

 

 Accuracy Support 

L rate=0.1 

Momentum=0.1 0.98 

29956 

Momentum=0.5 0.98 

Momentum=0.9 0.98 

L rate=0.5 

Momentum=0.1 0.98 

Momentum=0.5 0.98 

Momentum=0.9 0.98 

L rate=0.9 

Momentum=0.1 0.98 

Momentum=0.5 0.98 

Momentum=0.9 0.98 
 

Table 5.30 – ANN Classifier - Comparison of Accuracy 
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5.3 Resistant Bending Moment Regression 

 

The prediction of the resistant bending moment of the steel connections between the different 

beam and columns pairs comprising the testing set was made considering models built mainly 

by means of the same learning algorithms used for the prediction of the conditioning 

components, although with the necessary modifications due to the different nature of 

classification and regression problems. 

The examples comprising the training and testing set are the same used for the classification 

task with the exception of their respective outputs, which for the regression task are 

comprised of real-valued numbers. 

 

The quality of the different models was evaluated by means of the Mean Absolute Percentage 

Error (MAPE) and also through a graphic representation of the results, in the form of 2D 

plots, was obtained. In these plots, the abscissa axis represents the actual values of the 

resistant bending moment determined accordingly to EN1993-1-8, while the ordinate axis 

represents the predicted resistant bending moment for the respective beam-column pair. An 

additional straight line in the form 𝑦 = 𝑥, representing the set of perfectly predicted value was 

also added to the different plots. 

 

5.3.1 Linear Regression 

 

The use of Linear Regression for the development of a model to solve the regression task was 

done without any preprocessing of the data and was made possible by means of the 

LinearRegression() function present in the sklearn library. 

From the analysis of Figure 5.16, which represents the results obtained with this algorithm, it 

is noticeable the large dispersion of the results relatively to the red line representing the 

perfectly predicted results.  

It should also be mentioned two large deviations of the results. The first related to beam-

column pairs with large resistant bending moments, and the second, at the opposite end of the 

spectrum, for connections with small resistant bending moments, where the predicted 

examples comprise  negative values, incompatible with any physical interpretation for the 

behaviour of these connections. 

The graphical representation of these results is corroborated by a MAPE=253%. 
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Figure 5.16 – Linear regression Plot - True Mrd [kN.m] (abscissas) vs Predicted Mrd [KN.m] 

(ordinates) 

 

5.3.2 Decision Trees 

 

The function DecisionTreeRegressor() applied to dataset without any preprocessing enabled 

the development of a regression model by means of Decision Trees. 

The analysis of the results obtained with this learning algorithm was made considering the 

modification of the training and testsets by eliminating some of the features. This process 

allowed the evaluation of their influence on the behaviour of the algorithm. 
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Figure 5.17 – Decision Tree Plot - True Mrd [kN.m] (abscissas) vs Predicted Mrd [KN.m] 

(ordinates) – All 8 features 

 

The results represented on Figure 5.17, obtained considering all 8 features, are concentrated 

along the previously mentioned 𝑦 = 𝑥 straight line, suggesting that this algorithm may be 

well suited for the regression problem, a conclusion also supported by the relatively small 

MAPE=2.8%, a value that is kept lower even without considering the beam web thickness 

𝑡𝑤𝑏 (MAPE=2.8%) and both the beam web thickness 𝑡𝑤𝑏 and column flange thickness 𝑡𝑓𝑐 

(MAPE=3.1%). 
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Figure 5.18 - Decision Tree Plot - True Mrd [kN.m] (abscissas) vs Predicted Mrd [KN.m] 

(ordinates) – Without beam height ℎ𝑏 and web thickness 𝑡𝑤𝑏, column width 𝑏𝑐 and flange 

thickness 𝑡𝑓𝑐 

 

The plot presented on Figure 5.18 shows the results obtained considering dataset without 4 of 

its original features, namely the beam web thickness 𝑡𝑤𝑏, column flange thickness 𝑡𝑓𝑐, beam 

height ℎ𝑏 and the column width 𝑏𝑐. In comparison to the plot on Figure 5.17, it is noticeable 

an increase in the dispersion of the results relatively to the 𝑦 = 𝑥 straight line, also translated 

by the increase in the mean absolute percentage error of 13.9%. 
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5.3.3 k-Nearest Neighbors 

 

The suitability of models created by means of the k-Nearest Neighbors (kNN) learning 

algorithm was evaluated through the application of the KNeighborsRegressor() function to the 

dataset. The analysis focused not only on the influence of the variation of the number of k 

neighbors to be considered but also by varying the number of considered features. 

 

 

 

Figure 5.19 – k-Nearest Neighbors Plot - True Mrd [kN.m] (abscissas) vs Predicted Mrd 

[KN.m] (ordinates) – All 8 features and k=1 

 

Figure 5.19 shows a plot with the obtained distribution of results considering a single 

neighbour k=1 and all 8 features, while the plot presented on Figure 5.20 shows the results 
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obtained with the same dataset but considering instead the sevens closest neighbors (k=7) to 

each new example. 

The comparison between the two above mentioned plots, may not be enough to allow for a 

definite conclusion regarding which one of the created models best suits the problem. In this 

particular case the analysis of the mean absolute percentage error, respectively 4.6% and 8.3% 

leads to the conclusion that considering a single k=1 neighbor returns better results. 

 

 

Figure 5.20 – k-Nearest Neighbors Plot - True Mrd [kN.m] (abscissas) vs Predicted Mrd 

[KN.m] (ordinates) – All 8 features and k=7 

 

As for the case of the model created by means of Decision Trees, the model obtained through 

the kNN learning algorithm considering the removal of the features beam web thickness twb, 

column flange thickness tfc, beam height hb and the column width bc leads to a considerable 

increase of the mean absolute percentage error value, MAPE=15.3%, as represented on Figure 

5.21. 
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Figure 5.21 – k-Nearest Neighbors Plot - True Mrd [kN.m] (abscissas) vs Predicted Mrd 

[KN.m] (ordinates) – Without beam height ℎ𝑏 and web thickness 𝑡𝑤𝑏, column width 𝑏𝑐 and 

flange thickness 𝑡𝑓𝑐 and k=1 

 

5.3.4 Support Vector Machines – Linear Kernel 

 

The use of Support Vector Machines for the development of models to solve the regression 

problem was made possible by applying the SVR() function after the preprocessing of the 

datasets, namely through the standardization of the trainingset’s features whose parameters 

where then used for the standardization of the testing set’s features. 

As for the case of the classification problem, the use in this case of the SVR() function led to 

need of using the regularization parameter c while considering a linear kernel. A sensitivity 
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analysis was developed in which the regularization parameter was successively considered to 

have the following values, 0.01, 0.1, 1, 10 and 100. Figures 5.22 and 5.23 show the graphical 

representation of the results obtained for the extreme values c=0.01 and c=100, respectively. 

 

 

Figure 5.22 – SVM with Linear Kernel Plot - True Mrd [kN.m] (abscissas) vs Predicted Mrd 

[KN.m] (ordinates) – c=0.001 

 

From the analysis of both figures, it should not be expected that Support Vector Machines 

with linear kernel may yield interesting results, a conclusion that is supported considering a 

mean absolute percentage error of MAPE=79.2% and MAPE=152.5%, respectively for 

c=0.01 and c=100. 
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Figure 5.23 - SVM with Linear Kernel Plot - True Mrd [kN.m] (abscissas) vs Predicted Mrd 

[KN.m] (ordinates) – c=100 

 

5.3.5 Support Vector Machines – Radial Basis Function Kernel 

 

Once concluded the analysis assuming a linear kernel, the option for a Radial Basis Function 

was then considered. 

Different analysis, in which all 8 features were taken into account, and that were a result of 

considering different combinations originated from c taking the values 0.1, 1, 10, 100 and 

1000 and 𝛾 0.1, 1 and 10 were developed. 

Figure 5.24 shows the graphic representation of the obtained results for a model in which 

c=0.1 and 𝛾=0.1, leading to results that considerably lack a proper accuracy, in particular for 



Machine learning techniques in connection design  5 Results 

 

 

 

93 

 

large values of resistant bending moments. These conclusion is also supported by a 

MAPE=77.1%. 

 

 

Figure 5.24 – SVM with Radial Basis Function Plot - True Mrd [kN.m] (abscissas) vs 

Predicted Mrd [KN.m] (ordinates) – c=0.1 and γ=0.1 

 

The sensitivity analysis led however to interesting results when considering the pair of 

parameters c=1000 and 𝛾=0.1. These results are graphically represented on image 5.25 and 

lead to a MAPE=2.6%. 



Machine learning techniques in connection design  5 Results 

 

 

 

94 

 

 

Figure 5.25 – SVM with Radial Basis Function Plot - True Mrd [kN.m] (abscissas) vs 

Predicted Mrd [KN.m] (ordinates) – c=1000 and γ=0.1 

 

5.3.6 Artificial Neural Networks 

 

The application of Artificial Neural Networks (ANN) to the regression problem was possible 

by means of the sklearn library function MLPRegressor(). 

The use of this function led to the need of a preprocessing procedures comprising not only the 

standardization of the features of each example but also their respective output. 

In order to allow a correct representation of the resistant bending moment, an inversion 

process was need after the predicted results were obtained from the model, this task was 

accomplished by means of the inverse_transform() function. 
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As for the case of the classification task, the analysis by means of ANN begun with a 

sensitivity analysis by comparing the MAPE value of different network configurations, by 

varying the number of hidden layers and the number of neurons on each one of these layers 

while considering a fixed learning rate and momentum of 0.3 and 0.2 respectively. 

The results are presented on Table 5.31 and show that the better results were obtained for a 2 

hidden layer configuration with 10 neurons each and a 3 hidden layer configuration with 15 

neurons each, resulting, respectively in mean absolute percentage errors of MAPE=21.6% and 

MAPE=17.8%. 

 

Hidden 

Layers 
Neurons MAPE (%) 

1 

5 495 % 

10 26 % 

15 1398 % 

2 

5 211 % 

10 21.6 % 

15 26.7 % 

3 

5 455 % 

10 27 % 

15 17.8 % 

4 

5 189 % 

10 145 % 

15 23.5 % 
 

Table 5.31 – ANN Regressor – Comparison of Networks 

 

Taking into account the results presented on Table 5.31, the analysis focused on the two 

previously mentioned network configurations by varying the learning rate and momentum and 

considering that these parameters could take the values 0.005, 0.1, 0.5 or 0.9. 

 

The results presented on the plot of Figure 5.26 correspond to the configuration the led to the 

best results, the 2 hidden layer network with 10 neurons and a learning rate of 0.005 and a 

momentum of 0.1, yielding a MAPE=14.7%  
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Figure 5.26 – ANN Plot - True Mrd [kN.m] (abscissas) vs Predicted Mrd [KN.m] (ordinates) 

– Testing set with all 8 features and neural network with 2 hidden layers of 10 neurons each, a 

learning rate of 0.005 and a momentum of 0.1 

 

5.4 Summary 

 

Once the sensitivity analysis of the different algorithms and their respective hyperparameters 

has been concluded for both the classification of the conditioning component and regression 

of the resistant bending moment, it is of interest to compare the quality of the obtained results. 

Table 5.32 presents a summary of the best results using each learning algorithm and for the 

classification and regression problems respectively. 

For the classification problem, it is possible to obtain good predictions for algorithms 

considered, a conclusion that is supported by the overall high accuracy, in the range 

[0.96;0.98]. 
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The regression problem presents a considerably higher dispersion of results, with low quality 

models created by means of Linear Regression and with Support Vector Machines with 

Linear Kernel and high quality models created through algorithms with different levels of 

complexity such as Decision Trees and Support Vector Machines with Radial Bases Function 

Kernel., these latter algorithms enabled a resistant bending moment regression with a very 

low mean absolute percentage error. 

 

Algorithm 
Classification Regression 

Accuracy MAPE 

Linear Regression - 253% 

Decision Trees 0.96 2.8% 

k-Nearest Neighbor 0.95 4.6% 

Support Vector Machine 

Linear Kernel 
0.96 79.2% 

Support Vector Machine 

Radial Basis Function Kernel 
0.98 2.6% 

Artificial Neural Networks 0.98 14.7% 
 

Table 5.32 – Classification and Regression tasks - Comparison of results 
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6 Conclusion 

6.1 Final Considerations 

 

The work developed throughout this thesis unveiled a small part of the large number of 

subjects that compose both the design process of steel connections and also the field of 

machine learning, enabling a deeper understanding of the key concepts behind the behaviour 

of steel connections and some of the most widely used learning algorithms, as well as a more 

general perspective of the entire process involved in the creation and validation of the models 

used to solve different problems in general and the problem of designing unreinforced welded 

beam-to-column joints in particular. 

 

The main methods used currently for the design of beam to column connections were 

identified and a special attention was given to the method followed by the European standard 

EN 1993-1-8, the component method. A thorough description of the different components 

involved in this type of connection and which influence its behaviour was presented as well as 

the different equations used to obtained their respective resistance. 

 

A small introduction to Artificial Intelligence in general and Machine Learning in particular, 

as well as the different types of learning and the different types of problems were presented. 

Due to the importance that data pre-processing may have not only in the proper behaviour of 

the algorithms but also in the quality of the final results, some of the different techniques 

commonly used for the manipulation, treatment and enhancement of the datasets were also 

introduced.  

Particular attention was given to the description of different learning algorithms and the 

metrics used to evaluate the quality of the models. 

 

The proposed approach followed to solve the problem of designing unreinforced welded 

connections by means of machine learning techniques was presented, together with the 

adopted workflow and the procedure used to create and augment the dataset which served as 

the basis for the development of this work. 

 

The graphic analysis of the dataset by means of 2D and 3D representations was followed by 

the presentation of the results obtained with the different algorithms and the necessary 

analysis, based on the relevant metrics, for both the classification and regression problems. 

 

The algorithms used for the prediction of the conditioning component of the beam to column 

connection, with a wide range of complexity levels, led to very promising results, translated 

by the different considered evaluation metrics and especially by a high accuracy, in the range 

[0.96;0.98]. 
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Special attention should be given to the regression task developed with the aim of predicting 

the value of the resistant bending moment, as this value is commonly one of the most 

important in the design process of steel connections. Unlike what was observed for the 

classification task, some learning algorithms such as Linear Regression or Support Vector 

Machines with Linear Kernel yielded poor results with very high mean absolute percentage 

errors, and thus not appropriate for practical application. However, there were other 

algorithms, with different levels of complexity such as Decision Trees and Support Vector 

Machines with Radial Basis Function Kernel that led to mean absolute percentage errors 

smaller than 3%, a promising result for the integration of this workflow in the different stages 

of real projects. 

 

6.2 Future Developments 

 

The analysis developed in the current work was based upon a dataset that was created with 

specific assumptions regarding both the adopted steel grade, the nature of the forces acting on 

the two elements being connected and their geometry.  

 

Future developments of this work may consider an enlarged dataset comprising not only S355 

steel graded elements but also other steel grades and a combination of beams and columns 

with different steel grades. Together with the consideration of different steel grades, the 

adoption and application of the statistical distribution of the corresponding yield stresses, in 

an analogous manner as was adopted for the steel sections dimensional distribution, may lead 

to a rapid increase in the number of examples comprising the dataset. 

 

Another aspect is the consideration of axial forces acting on the beam and column as well as 

the combination of axial forces and bending moments on both the beam and column elements, 

leading to examples that may be closer to real cases. 

 

Although the work here developed focused on the more standard H and I shaped steel cross 

sections, other databases may be created considering other cross sections such as rectangular 

or circular hollow sections. It may also be of interest to expand the scope of this work in order 

to include not only welded connections but also bolted ones. 
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