

Abbildung A.7.: Darstellung der Spannungen $\sigma_x(z)$, $\sigma_z(z)$ bei c/a = 0,5 und $\tau_{xz}(z)$ bei c/a = 1,0, anhand eines Feldes des Seitenverhältnisses von $\alpha = 1,0$ und verschiedener Lasteinleitungsverhältnisse c/a. Weiterhin sind die Vorzeichen der jeweiligen Spannungen gegeben. Der besseren Sichtbarkeit wegen sind die Spannungsverläufe $\sigma_z(z)$ und $\sigma_z(x)$ mit einem Skalierungsfaktor ($f_{scale} = 3,0$) vergrößert worden.

Abbildung A.8.: Lastausbreitungslänge $c_u(z)$ in Abhängigkeit des Seitenverhältnisses α und des Lasteinleitungsverhältnisses c/a. Ausgewertet ist dies für $\alpha = 1,25$; 1,5; 2,0; 3,0 und c/a = 1/6; 2/6;... 6/6 (siehe dazu (v)).

(b) Imperfectionsamplitude min $\{a/420, b/420\}$.

Abbildung A.9.: Ergebnisse der GMNIA-Untersuchung des *Modells C*, mit Verwendung der analytischen Lösung zur Ermittlung des Spannungsverlaufs $\sigma_z(z)$ und der Lastausbreitung $c_u(z)$. Außerdem wurde die kritische Knickspannung $\sigma_{cr,c}$ ohne die modifizierte Beullänge b_{cr} berechnet. Dargestellt sind jeweils die Untersuchungen zweier Imperfektionsamplituden. Des Weiteren sind die Ergebnisse aus der Interpolationsfunktion des prEN 1993-1-5 (•) und dem Vorschlag von POUROSTAD (•) abgebildet. (---): $\pm 10 \%$ -Abweichung.

Abbildung A.10.: Ergebnisse der GMNIA-Untersuchung des *Modells C*, mit Verwendung des Ansatzes des **COMBRI-Forschungsprojekts** zur Ermittlung des Spannungsverlaufs $\sigma_z(z)$ und der Lastausbreitung $c_u(z)$. Außerdem wurde die kritische Knickspannung $\sigma_{cr,c}$ ohne die modifizierte Beullänge b_{cr} berechnet. Dargestellt sind jeweils die Untersuchungen zweier Imperfektionsamplituden. Des Weiteren sind die Ergebnisse aus der Interpolationsfunktion des prEN 1993-1-5 (•) und dem Vorschlag von POUROSTAD (•) abgebildet. (——): $LPF_{num} = LPF_{EC}$. (---): $\pm 10 \%$ -Abweichung.

A.3. Anhang zu der Parameterstudie des ausgesteiften Beulfeldes

Abbildung A.11.: Teil 1: Laststeigerungsfaktoren LPF_{num} der numerischen Ergebnisse des Gesamtfeldnachweises im Vergleich mit den Ergebnissen des Längssteifen-Nachweises nach **Seitz** und in Abhängigkeit des Interaktionswinkels θ . Dargestellt sind: $\theta = 0^{\circ}$ bis 40° . (—): $LPF_{num} = LPF_{Seitz}$. (---): $\pm 10 \%$ -Abweichung.

Abbildung A.12.: Teil 2: Laststeigerungsfaktoren LPF_{num} der numerischen Ergebnisse des Gesamtfeldnachweises im Vergleich mit den Ergebnissen des Längssteifen-Nachweises nach **Seitz** und in Abhängigkeit des Interaktionswinkels θ . Dargestellt sind: $\theta = 50^{\circ}$ bis 90°. (----): $LPF_{num} = LPF_{Seitz}$. (---): $\pm 10 \%$ -Abweichung.

Abbildung A.13.: Laststeigerungsfaktoren LPF_{num} der numerischen Ergebnisse des Gesamtfeldnachweises im Vergleich mit den Ergebnissen des Längssteifen-Nachweises nach **Seitz** und in Abhängigkeit des Seitenverhältnisses α . (---): $LPF_{num} = LPF_{Seitz}$. (---): ± 10 % -Abweichung.

Abbildung A.14.: Laststeigerungsfaktoren LPF_{num} der numerischen Ergebnisse des Gesamtfeldnachweises im Vergleich mit den Ergebnissen des Längssteifen-Nachweises nach **Seitz** und in Abhängigkeit des Verhältnisses b/t aus Feldbreite b und Stegdicke t. (---): $LPF_{num} = LPF_{Seitz}$. (---): ± 10 % -Abweichung.

Abbildung A.15.: Laststeigerungsfaktoren LPF_{num} der numerischen Ergebnisse des Gesamtfeldnachweises im Vergleich mit den Ergebnissen des Längssteifen-Nachweises nach **Seitz** und in Abhängigkeit des Lasteinleitungsverhältnisses c/a. (---): $LPF_{num} = LPF_{Seitz}$. (---): ± 10 % -Abweichung.

Abbildung A.16.: Laststeigerungsfaktoren LPF_{num} der numerischen Ergebnisse des *Gesamtfeldnachweises* im Vergleich mit den Ergebnissen des Längssteifen-Nachweises nach **Seitz** und in Abhängigkeit der bezogenen Steifigkeit γ . (---): $LPF_{num} = LPF_{Seitz}$. (---): ± 10 % -Abweichung.

Abbildung A.17.: Laststeigerungsfaktoren LPF_{num} der numerischen Ergebnisse des Gesamtfeldnachweises im Vergleich mit den Ergebnissen des Längssteifen-Nachweises nach **Seitz** und in Abhängigkeit der Anzahl der Steifen in der Druckzone $n_{St,D}$. (---): $LPF_{num} = LPF_{Seitz}$. (---): ± 10 % -Abweichung.

Abbildung A.18.: Teil 1: Laststeigerungsfaktoren LPF_{num} der numerischen Ergebnisse des Gesamtfeldnachweises im Vergleich mit den Ergebnissen des Längssteifen-Nachweises nach dem **BASt-Heft B140** und in Abhängigkeit des Interaktionswinkels θ . Dargestellt sind: $\theta = 0^{\circ}$ bis 40° . (---): $LPF_{num} = LPF_{BASt}$. (---): $\pm 10 \%$ -Abweichung.

Abbildung A.19.: Teil 2: Laststeigerungsfaktoren LPF_{num} der numerischen Ergebnisse des *Gesamtfeld-nachweises* im Vergleich mit den Ergebnissen des Längssteifen-Nachweises nach dem **BASt-Heft B140** und in Abhängigkeit des Interaktionswinkels θ . Dargestellt sind: $\theta = 50^{\circ}$ bis 90° . (---): $LPF_{num} = LPF_{BASt}$. (---): $\pm 10 \%$ -Abweichung.

Abbildung A.20.: Laststeigerungsfaktoren LPF_{num} der numerischen Ergebnisse des Gesamtfeldnachweises im Vergleich mit den Ergebnissen des Längssteifen-Nachweises nach dem **BASt-Heft B140** und in Abhängigkeit des Seitenverhältnisses α . (---): $LPF_{num} = LPF_{BASt}$. (---): ± 10 % -Abweichung.

Abbildung A.21.: Laststeigerungsfaktoren LPF_{num} der numerischen Ergebnisse des Gesamtfeldnachweises im Vergleich mit den Ergebnissen des Längssteifen-Nachweises nach dem **BASt-Heft B140** und in Abhängigkeit des Verhältnisses b/t aus Feldbreite b und Stegdicke t. (---): $LPF_{num} = LPF_{BASt}$. (---): $\pm 10 \%$ -Abweichung.

Abbildung A.22.: Laststeigerungsfaktoren LPF_{num} der numerischen Ergebnisse des Gesamtfeldnachweises im Vergleich mit den Ergebnissen des Längssteifen-Nachweises nach dem **BASt-Heft B140** und in Abhängigkeit des Lasteinleitungsverhältnisses c/a. (---): $LPF_{num} = LPF_{BASt}$. (---): ± 10 % -Abweichung.

Abbildung A.23.: Laststeigerungsfaktoren LPF_{num} der numerischen Ergebnisse des Gesamtfeldnachweises im Vergleich mit den Ergebnissen des Längssteifen-Nachweises nach dem **BASt-Heft B140** und in Abhängigkeit der bezogenen Steifigkeit γ . (---): $LPF_{num} = LPF_{BASt}$. (---): ± 10 % -Abweichung.

Abbildung A.24.: Laststeigerungsfaktoren LPF_{num} der numerischen Ergebnisse des Gesamtfeldnachweises im Vergleich mit den Ergebnissen des Längssteifen-Nachweises nach **BASt-Heft B140** und in Abhängigkeit der Anzahl der Steifen in der Druckzone $n_{St,D}$. (---): $LPF_{num} = LPF_{BASt}$. (---): ± 10 % -Abweichung.

A.3.2. Anhang zu den Untersuchungen des ausgesteiften Beulfelds (4.2.2)

Abbildung A.25.: Teil 1: Laststeigerungsfaktoren LPF_{num} der numerischen Ergebnisse des Gesamtfeldnachweises in Abhängigkeit der Schlankheit $\bar{\lambda}_p$ und des Interaktionswinkels θ . Dargestellt sind: $\theta = 0^{\circ}$ bis 40°. Weiterhin sind dargestellt: Die Winterkurve (-----), die Abminderungskurve nach prEN 1993-1-5 Abschn. 12.4(5) mit $\bar{\lambda}_p = 0.8$ (------) und die Abminderungskurve $\chi_c(\bar{\lambda}_p)$ nach DIN EN 1993-1-1 Abschn. 6.3.1.2 mit $\alpha_{e,max} = 0.4563$ eines geschlossenen Steifenquerschnitts (-----).

Abbildung A.26.: Teil 2: Laststeigerungsfaktoren LPF_{num} der numerischen Ergebnisse des Gesamtfeldnachweises in Abhängigkeit der Schlankheit $\bar{\lambda}_p$ und des Interaktionswinkels θ . Dargestellt sind: $\theta = 50^{\circ}$ bis 90°. Weiterhin sind dargestellt: Die Winterkurve (—), die Abminderungskurve nach prEN 1993-1-5 Abschn. 12.4(5) mit $\bar{\lambda}_p = 0.8$ (—) und die Abminderungskurve $\chi_c(\bar{\lambda}_p)$ nach DIN EN 1993-1-1 Abschn. 6.3.1.2 mit $\alpha_{e,max} = 0.4563$ eines geschlossenen Steifenquerschnitts (—).

Abbildung A.27.: Teil 1: Laststeigerungsfaktoren LPF_{num} der numerischen Ergebnisse des Gesamtfeldnachweises im Vergleich mit den nach prEN 1993-1-5 ermittelten Werten (LPF_{EC}) und in Abhängigkeit des Interaktionswinkels. Dargestellt sind: $\theta = 0^{\circ}$ bis 40°. (----): $LPF_{num} = LPF_{EC}$. (---): ± 10 % -Abweichung.

Abbildung A.28.: Teil 2: Laststeigerungsfaktoren LPF_{num} der numerischen Ergebnisse des Gesamtfeldnachweises im Vergleich mit den nach prEN 1993-1-5 ermittelten Werten (LPF_{EC}) und in Abhängigkeit des Interaktionswinkels. Dargestellt sind: $\theta = 50^{\circ}$ bis 90° . (---): $LPF_{num} = LPF_{EC}$. (---): $\pm 10 \%$ -Abweichung.

Abbildung A.29.: Laststeigerungsfaktoren LPF_{num} der numerischen Ergebnisse des Gesamtfeldnachweises in Abhängigkeit der Schlankheit $\bar{\lambda}_p$ und des Seitenverhältnisses α . Weiterhin sind dargestellt: Die Winterkurve (-----), die Abminderungskurve nach prEN 1993-1-5 Abschn. 12.4(5) mit $\bar{\lambda}_p = 0.8$ (------) und die Abminderungskurve $\chi_c(\bar{\lambda}_p)$ nach DIN EN 1993-1-1 Abschn. 6.3.1.2 mit $\alpha_{e,max} = 0.4563$ eines geschlossenen Steifenquerschnitts (---------).

Abbildung A.30.: Laststeigerungsfaktoren LPF_{num} der numerischen Ergebnisse des Gesamtfeldnachweises im Vergleich mit den nach prEN 1993-1-5 ermittelten Werten (LPF_{EC}) und in Abhängigkeit des Seitenverhältnisses α . (---): $LPF_{num} = LPF_{EC}$. (---): ± 10 % -Abweichung.

Abbildung A.31.: Laststeigerungsfaktoren LPF_{num} der numerischen Ergebnisse des Gesamtfeldnachweises in Abhängigkeit der Schlankheit $\bar{\lambda}_p$ und des Verhältnisses b/t aus Feldbreite b und Stegdicke t. Weiterhin sind dargestellt: Die Winterkurve (—), die Abminderungskurve nach prEN 1993-1-5 Abschn. 12.4(5) mit $\bar{\lambda}_p = 0.8$ (—) und die Abminderungskurve $\chi_c(\bar{\lambda}_p)$ nach DIN EN 1993-1-1 Abschn. 6.3.1.2 mit $\alpha_{e,max} = 0.4563$ eines geschlossenen Steifenquerschnitts (—).

Abbildung A.32.: Laststeigerungsfaktoren LPF_{num} der numerischen Ergebnisse des Gesamtfeldnachweises im Vergleich mit den nach prEN 1993-1-5 ermittelten Werten (LPF_{EC}) und in Abhängigkeit des Verhältnisses b/t, aus Feldbreite b und Stegdicke t. (---): $LPF_{num} = LPF_{EC}$. (---): ± 10 % -Abweichung.

Abbildung A.33.: Laststeigerungsfaktoren LPF_{num} der numerischen Ergebnisse des Gesamtfeldnachweises in Abhängigkeit der Schlankheit $\bar{\lambda}_p$ und der bezogenen Steifigkeit γ . Weiterhin sind dargestellt: Die Winterkurve (—), die Abminderungskurve nach prEN 1993-1-5 Abschn. 12.4(5) mit $\bar{\lambda}_p = 0.8$ (—) und die Abminderungskurve $\chi_c(\bar{\lambda}_p)$ nach DIN EN 1993-1-1 Abschn. 6.3.1.2 mit $\alpha_{e,max} = 0.4563$ eines geschlossenen Steifenquerschnitts (—).

Abbildung A.34.: Laststeigerungsfaktoren LPF_{num} der numerischen Ergebnisse des *Gesamtfeldnachweises* im Vergleich mit den nach prEN 1993-1-5 ermittelten Werten (LPF_{EC}) und in Abhängigkeit der bezogenen Steifigkeit γ . (---): $LPF_{num} = LPF_{EC}$. (---): ± 10 % -Abweichung.

Abbildung A.35.: Laststeigerungsfaktoren LPF_{num} der numerischen Ergebnisse des Gesamtfeldnachweises in Abhängigkeit der Schlankheit $\bar{\lambda}_p$ und des Seitenverhältnisses α bei $\theta = 90^{\circ}$. Weiterhin sind dargestellt: Die Winterkurve (-----), die Abminderungskurve nach prEN 1993-1-5 Abschn. 12.4(5) mit $\bar{\lambda}_p = 0.8$ (---------) und die Abminderungskurve $\chi_c(\bar{\lambda}_p)$ nach DIN EN 1993-1-1 Abschn. 6.3.1.2 mit $\alpha_{e,max} = 0.4563$ eines geschlossenen Steifenquerschnitts (----------).

Abbildung A.36.: Laststeigerungsfaktoren LPF_{num} der numerischen Ergebnisse des Gesamtfeldnachweises in Abhängigkeit der Schlankheit $\bar{\lambda}_p$ und der bezogenen Steifigkeit γ bei $\theta = 90^{\circ}$. Weiterhin sind dargestellt: Die Winterkurve (------), die Abminderungskurve nach prEN 1993-1-5 Abschn. 12.4(5) mit $\bar{\lambda}_p = 0.8$ (----------) und die Abminderungskurve $\chi_c(\bar{\lambda}_p)$ nach DIN EN 1993-1-1 Abschn. 6.3.1.2 mit $\alpha_{e,max} = 0.4563$ eines geschlossenen Steifenquerschnitts (-----------).

Abbildung A.37.: Laststeigerungsfaktoren LPF_{num} der numerischen Ergebnisse des Gesamtfeldnachweises in Abhängigkeit der Schlankheit $\bar{\lambda}_p$ und der Anzahl der Steifen in der Druckzone $n_{St,D}$ bei $\theta = 90^{\circ}$. Weiterhin sind dargestellt: Die Winterkurve (------), die Abminderungskurve nach prEN 1993-1-5 Abschn. 12.4(5) mit $\bar{\lambda}_p = 0,8$ (--------) und die Abminderungskurve $\chi_c(\bar{\lambda}_p)$ nach DIN EN 1993-1-1 Abschn. 6.3.1.2 mit $\alpha_{e,max} =$ 0,4563 eines geschlossenen Steifenquerschnitts (--------).

A.3.3. Anhang zu der Ermittlung des Vergrößerungsfaktors f_{λ} bzw. Vergrößerungsfunktion $f_{\lambda}(\bar{\lambda}_p)$ (4.2.3)

Abbildung A.40.: Verteilung der Vergrößerungsfaktoren f_{λ} in Abhängigkeit des Lasteinleitungsverhältnisses c/a bei $\theta = 90^{\circ}$. Die Gerade (------) markiert $f_{\lambda} = 1,0$.

Abbildung A.42.: Verteilung der Vergrößerungsfaktoren f_{λ} in Abhängigkeit der Anzahl der Steifen in der Druckzone $n_{St,D}$ bei $\theta = 90^{\circ}$. Die Gerade (------) markiert $f_{\lambda} = 1,0$.

Abbildung A.43.: Verteilung der Vergrößerungsfaktoren f_{λ} (•) in Abhängigkeit des Seitenverhältnisses α , des Lasteinleitungsverhältnisses c/a und der bezogenen Gesamtsteifigkeit Γ_{St} . Für c/a = 0,25 ist eine Näherung der Verteilung in Abhängigkeit von α gegeben (—). Für c/a = 1,0 sind die Werte mit einem konstanten Faktor angegeben (—). Bei c/a = 0,5 und 0,75 ist die Funktion 4.22 für die jeweiligen Schnitte ausgewertet.