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Abstract

Traditionally, steel truss design typically involves the steps for cross-section classi-

fication, estimation of the effective length and individual member capacity check,

although these traditional design procedures are optimized for single member de-

sign, but the lengthy calculations will normally reduce the design accuracy and

efficiency when structure became more complicated.

With the popularization of personal computers, design by second order analy-

sis became a practical design method for structural engineers due to its capacity to

capture the second order effects during analysis, but the majority of these second

order analysis methods are still rely on the cross-section classification to manipu-

late the interaction between the bending moment capacity and compressive force

resistance, those restrictions for higher classes cross-sections will typically lead to

an underestimated ultimate capacity using second order analysis methods.

To overcome these issues and to avoid using computationally demanding shell

elements, a newly discovered method, advanced analysis with CSM strain limit is

extended to steel Warren truss design in this study. The studied advanced anal-

ysis method takes into consideration both geometric and material nonlinearities,

which could benefits significantly by capturing the effects of local moment dis-

tribution, strain hardening, the element interaction and plasticity spread without

additional design checks.

In this study, the literature review of each mentioned analysis method is pre-

sented, followed by an evaluation of the accuracy of the studied advanced analysis

with CSM strain limits in comparison to the benchmark shell FE model and other

alternative advanced analysis methods. Additionally, a worked example illustrat-

ing the analysis procedures for each method is attached at Section 5.
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1 INTRODUCTION

1 Introduction

In terms of steel trusses, it is known as a more economical structural framework comparing to

individual steel members, where the applied loads can be resisted primarily by the axial forces

of each individual members. Due to its structural functionality, steel trusses are commonly

used in long span structures for load-transfer purpose, such as roofs, bridges and transverse

buildings (Davison & Owens 2012). Over the last decade, with the increasing complexity

of modern truss systems, the conservative traditional method for truss design can no longer

satisfy the needs of sustainability, structural designers are thus seeking for an efficient and

practical method which the safety and resistance of the truss can be simply assessed, but also

economically viable and environmentally friendly.

Traditionally, the load resistance capacity of steel truss is governed by the individual

member flexural buckling resistance or cross-section tension resistance, and each individual

member should be able to sustain the axial force determined from a first order global anal-

ysis that does not considers the load-deformation response of the truss system. Additionally,

modern trusses tend to have more complex connection regions, and this will lead to inac-

curate results and lengthy calculations using the simplified method, since the estimation of

the buckling length Lcr is based on the end constraints of each individual member within the

truss.

Alternatively, with the help of Finite Elements Analysis, the most representative struc-

tural behaviour can be captured by geometrically and materially nonlinear analysis with

imperfections (GMNIA), which directly modelling plasticity, residue stress and geometric im-

perfections using shell elements. However, as the process of modeling truss structure directly

using shell elements is cumbersome, so the frame analysis is generally based on modelling

the computationally efficient beam finite elements, but the beam finite element is unable to

capture the effect of local buckling, which means the lengthy calculations of cross-section

classification and cross-section resistance checks are still required. To avoid the complexity of

modelling shell elements and the limitation of traditional checks for beam element models,

use of strain limits, obtained from the Continuous Strength Method developed by Gardner

(2008), has been proposed and been successfully adopted into single member design and por-

tal frame design (Fieber et al. 2019a, Quan et al. 2020, Walport et al. 2021, 2022, Gardner,

Yun, Fieber & Macorini 2019).
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1 INTRODUCTION

Unless accounting for the influence of local buckling, the studied advanced analysis with

CSM strain limits also take account of the allowable deformation capacity of each individ-

ual cross-section and the positive effects from strain hardening, plasticity spreading and the

enhanced local stability of the cross-section through strain averaging approach (Fieber et al.

2019b).

In this thesis, an assessment of the studied advanced analysis with CSM strain limits

for simple Warren truss structures will be presented, following with the comparison between

other available truss analysis methods featured in prEN 1993-1-1, and a systematic worked

example of steel truss design by various analysis method will be also provided at the end of

this thesis.

2



2 LITERATURE REVIEW OF ANALYSIS METHODS

2 Literature Review of Analysis Methods

As mentioned in the last chapter, different types of analysis method have been carried out

simultaneously in order to compare with the studied advanced analysis method. In prEN

1993-1-1, different types of analysis have been classified to method M0 - M5 according to

the extent of the global analysis, imperfections and second order effects (Eurocode 3 - Design

of steel structures 2021), the method is more comprehensive as the number after letter M is

raised, ranging from method (M0) only requires basic cross-sectional resistance check with-

out considering imperfections to method (M5) take into account all in-plane and out-of-plane

second order effects, global sway imperfections, torsional effects and local bow imperfections.

The following sections will illustrate the analysis methods used in this study separately.

2.1 Traditional Steel Truss Design Approach (M2)

Conventionally, the steel truss design can be divided into two steps; Firstly, the basic force

equilibrium analysis is performed to determine the internal forces of individual members

(chords and diagonals). Thus, the resistance capacity and stability of each individual member

is examined through a series of design checks based on the corresponding cross-section clas-

sification, which is governed by the slenderest plate element within the entire cross-section.

The purpose of using cross-section classification is to take into account the effects of local

buckling on the deformation capacity and resistance of cross-sections. As structural steel sec-

tions are slender than the other structural components, and material properties of steel, the

majority of steel structures are suspect to compression failure or buckling rather than tension

failure. Traditionally, the flexural buckling resistance Nb,Rd of compression members are de-

fined by applying a reduction factor χ to the cross-sectional compression resistance shown as:

Nb,Rd =
χAfy
γM1

for Class 1, 2 and 3 Cross-sections (2.1)

Nb,Rd =
χAef f fy
γM1

for (symmetric) Class 4 Cross-sections (2.2)

In addition, the buckling reduction factor χ is assessed using column buckling curves defined

by Eurocode 3 Part 1.1, and it is closely related to the non-dimensional slenderness λ̄ of the

member, the basic formulations for the buckling curves are as given below:

3



2.1 Traditional Method 2 LITERATURE REVIEW OF ANALYSIS METHODS

χ =
1

Φ +
√
Φ2 − λ̄2

but λ̄ ≤ 1.0 (2.3)

and the corresponding functions for Φ and λ̄ are shown as below:

Φ = 0.5[1+α(λ̄− 0.2) + λ̄2] (2.4)

λ̄ =

√
Afy
Ncr

for Class 1, 2 and 3 Cross-sections (2.5)

λ̄ =

√
Aef f fy
Ncr

for Class 4 Cross-sections (2.6)

where A is the cross-sectional area and Ncr represents the elastic critical buckling load.

As shown in the formulas above, the buckling reduction factor is also corresponding to the

imperfection factor α which is dependent on the type, buckling axis and material properties

of the cross-section, the altered shapes of these buckling curves corresponding to different

imperfection factors α are shown in the following Fig 1.

Figure 1: Buckling curves plotted from Eq (2.3)

4
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In addition, the critical buckling load Ncr of a compression member can be calculated using

the following Eq. (2.7) based on the second moment area I and effective length Lcr of the

compression member.

Ncr =
π2EI
Lcr

(2.7)

Where determining the value of Lcr is one of the main source of uncertainty by using tra-

ditional analysis method, the idea of using effective length is to take into account the end

constraints and boundary conditions of the compression member. It is clear to see that there

are three columns with different length L (original length) in Fig 2, but the effective length

Lcr for these columns are coincidentally the same due to the different boundary conditions.

Figure 2: Illustration of the effective length concept (Fieber 2019)

However, in practice steel truss design, the end conditions will be neither ideal pined or

fixed, so overestimate or underestimate the effective length Lcr will directly affect the results

of buckling resistance, and this phenomenon will be further discussed later by comparing to

the results using other analysis methods.

5
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2.2 Advanced Analysis with CSM Strain Limit (M4)

In the upcoming sections, the studied advanced analysis with CSM strain limits is outlined

and explained from three aspects; the strain limits defined from the base curve of Continuous

Strength Method, the strain averaging approach adopted in the design check and the Quad-

Linear material model adopted in the Finite Element model.

2.2.1 The Continuous Strength Method

Continuous Strength Method (CSM) is a deformation-based structural design approach that

was developed to overcome the shortcomings of traditional cross-section classifications. The

idea behind CSM is to present a continuous relationship between the deformation capacity

and the cross-sectional slenderness, and enables the material strain hardening properties to

be exploited (Gardner 2008, Fieber 2019). Initially, the CSM was created to account for the

advantageous impacts of the high level of non-linearity and strain hardening in stainless steel

cross-sections. However, over the years of development, Yun et al. (2018a) also investigated

the applicability of continuous strength method on hot-rolled steel cross-sections and discov-

ered that the CSM can also produce more accurate capacity predictions for hot-rolled steel

than the conventional analysis method.

For the studied advanced analysis with CSM strain limits, failure is detected at once the

maximum longitudinal compressive strain (εEd) within the structure has reached the CSM

compressive strain limit (εcsm) that a cross-section can sustain prior to failure, so the rela-

tionship between the maximum longitudinal compressive strain εEd and CSM compressive

strain limit εcsm should always satisfy Eq. (2.8) at each cross-section within the structure.

εEd
εcsm

≤ 1.0 (2.8)

where the CSM compressive strain limit εcsm is defined by the CSM base curve which is in a

relationship between εcsm/εy and the local slenderness of the full cross-section λ̄p, where εy is

the yield strain which can be calculated by divide the yield stress fy by the Young’s modulus

E (fy/E). In addition, the CSM base curve has been dived into two parts; for non-slender

cross-sections with λ̄p ≤ 0.68 and for slender cross-section with λ̄p > 0.68, the expressions are

given as below:

6
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εcsm
εy

=
0.25

λ̄p
3.6 but ≤

(
Ω,
C1εu
εy

)
for λ̄p ≤ 0.68 (2.9)

εcsm
εy

=

1− 0.222

λ̄p
1.05

 1

λ̄p
1.05 for λ̄p > 0.68 (2.10)

For relative stocky cross-sections with λ̄p ≤ 0.68, a large addition factor could be derived

from Eq. (2.9) without setting the upper limits. To avoid the deformation capacity εcsm/εy

exceeding the maximum allowable level of plastic deformation (Ω) and over-prediction of

the material strength, two upper limits have been defined in Eq. (2.9), the first limit Ω

is a specific design parameter dependent on the designer’s preference (tolerance of plastic

deformation, purpose of analysis, etc.), the recommended default value of Ω is 15 according

to the ductility requirements stated in EN 1993-1-1, and the following Fig. 3 shows the base

curve for the entire slenderness range begins at 0 ≤ λ̄p ≤ 1.4 using the recommended value

of Ω. The second upper limit is related to the constant C1 for the quad-linear material model

explained in Section 2.2.4. Additionally, in the cases of high shear force, relative provisions

in EN 1993-1-1 and EN 1993-1-5 are also required to take into account the influence of shear,

further details of the relative provisions have been clarified in Quan et al. (2021) , section

2.2.2 and an worked example are included in this study to illustrate the shear effect.

Figure 3: The base curve of CSM (Ω = 15) (Fieber 2019)

7
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In addition, the cross-sectional slenderness λ̄p is used to assess the susceptibility to local

instability, and the equation of λ̄p (Eq. 2.11) is dependent on the yield stress fy and the

elastic local buckling stress of the full cross-section σcr ,cs.

λ̄p =

√
fy

σcr ,cs
(2.11)

where the elastic critical buckling stress of a cross-section σcr ,cs can be easily calculated using

the standard plate theory based on the slenderest plate of the cross-section and assuming

simply-supported boundary conditions, however, this method will waste part of the cross-

sectional capacity which could be utilized through element interaction. As a result, in the rest

of the study, the calculation of elastic local buckling stresses of full cross-section will be based

on a series of well developed formulae proposed by Gardner, Fieber & Macorini (2019). The

general concept used in the calculation of elastic local buckling stress of a full cross-section is

to interpolate between the local buckling stresses of the isolated critical plate with fixed and

simply supported boundary conditions along the adjoined edges (Gardner, Fieber & Macorini

2019), and the elastic local buckling stress of the full cross-section is shown in Eq. (2.12).

σcr ,cs = σ
SS
cr,p + ζ(σ

F
cr,p − σSScr,p) where 0 ≤ ζ ≤ 1.0 (2.12)

where σSScr,p is the lower bound in Eq. (2.12), taken as the lowest buckling stress of the isolated

plate components with simply-supported boundary conditions along the neighbouring edges

(flange σSScr,f or web σSScr,w), and σFcr,p is the upper bound in Eq. (2.12) which can be taken

similarly from the detached plate components with fixed boundary conditions (flange σFcr,f or

web σFcr,w), the mathematical expressions of the elastic buckling stress for the detached plate

with simply-supported and fixed support conditions can be found below.

σSS
cr,p =min

(
βfσ

SS
cr,f, βwσ

SS
cr,w

)
(2.13)

σF
cr,p =min

(
βfσ

F
cr,f, βwσ

F
cr,w

)
(2.14)

8
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where βf and βw are the load correction factors related to the ratio of maximum design com-

pressive stress in the cross-section and the maximum compressive stress in flange or web,

given as below.

βf =
σmax,cs

σmax,f
βw =

σmax,cs

σmax,w
(2.15)

In addition, the buckling stress for an isolated plate can be derived from the general expres-

sion Eq. (2.16).

σcr,p = k
π2E

12(1− v2)

( t
b

)2
(2.16)

where k represents the buckling coefficient of internal and outstand plates with simply-

supported or fixed boundary conditions along the adjacent edges, and the formula of the

coefficient of buckling k have been tabulated in EN 1993-1-5 and been extended by Gard-

ner, Fieber & Macorini (2019). Furthermore, as this study focuses mainly on the structural

behaviour of I-section trusses subjected to principal axis bending and compression, only the

expressions for the interaction coefficients that have been used in this study are presented

below.

ζ = 0.15
tf
tW
φ ≥ tW

tf
(0.4− 0.25φ) Flange critical (φ < 1) (2.17)

ζ =
tf
tW

(
0.45− 0.3

φ2

)
Web critical (φ ≥ 1) (2.18)

where the symbol φ in Eq. (2.17 & 2.18) is a governing term which quantifies the suscepti-

bility of the web and the flange plates to local buckling, and the expressions for φ are given

as below:

φ =
βfσ

SS
cr,f

βwσ
SS
cr,w

=

 σSS
cr,f

σSS
cr,w

(σmax,w

σmax,f

)
(2.19)

φ =
σSS
cr,f

σSS
cr,w

if σmax,f = σmax,w (2.20)

9
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2.2.2 Influence of High Shear Force

According to the conventional design check stated in EN 1993-1-1, the shear capacity check

of a cross-section must satisfy the following expression:

VEd
Vpl,Rd

≤ 1.0 (2.21)

where VEd is the design shear force, and the Vpl,Rd is the plastic shear resistance of the

cross-section. Additionally, EN 1993-1-1 suggested that a reduction factor should be applied

to the bending capacity once the design shear force VEd exceeds half of the plastic shear

capacity Vpl,Rd , and the bending moment is thus determined based on the decreased yield

stress (1− ρ)fy to account the shear area within the cross-section, the reduction factor ρ can

be expressed as below.

ρ =
(
2VEd
Vpl,Rd

− 1
)2

(2.22)

Similar approach has adopted in the studied CSM strain limit method, a reduction factor ρcsm

is thus required to take into consideration the effects of high shear force. For the case of a

cross-section experiencing high shear, the relationship between the maximum longitudinal

compressive strain εEd and CSM compressive strain limit εcsm should now satisfy Eq. (2.23)

given below (Quan et al. 2021).

εEd,Lb
ρcsmεcsm

≤ 1.0 for VEd > 0.5Vpl,Rd (2.23)

As the calculation of the CSM reduction factor ρcsm is modified based on the reduction factor

ρ provided in EN 1993-1-1, and the CSM reduction factor is directly applied on the com-

pressivie strain limit, so a separate design check is still required to satisfy Eq. (2.22). For

a cross-section experiencing the shear force not greater than 50 percent of the plastic shear

resistance Vpl,Rd , the CSM reduction factor shall be simply taken as 1. The expressions for

the 2 cases are given as below in Eq. (2.24).

ρcsm =

 1 for VEd ≤ 0.5Vpl,Rd
0.5

0.5+ρ for VEd > 0.5Vpl,Rd
(2.24)

10
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2.2.3 The Strain Averaging Approach

The resultant CSM strain limits could be directly compared to the strain outputs derived by

finite element analysis under normal conditions. In certain instances, however, the existence

of a local moment gradient over the member length may improve the local stability of the

cross-section (Fieber 2019). In order to take into account the advantageous effects of local

moment gradients, the CSM strain limit is applied to the averaged strain generated from FE

analysis over the characteristic length of the member Lb,cs, where the expressions of the strain

averaging approach are given as below.

εEd,Lb
εcsm

≤ 1.0

εEd,Lb =
1
n

n∑
1

εi and n ≥ 1
(2.25)

where εEd,Lb is the mean design compressive strain of n completed elements lying inside

the corresponding local buckling half-wavelength Lb,cs, and additional step of considering

weighted average strain should be carried out for the case of unequal element length.

In addition, the elastic local buckling half-wavelength Lb,cs could be determined numerically

using finite strip analysis (Li & Schafer 2010) or using the analytical expressions proposed by

Fieber et al. (2019b) which is developed in a series with the elastic local buckling stress of

the full cross-section (Gardner, Fieber & Macorini 2019). The general approach of the elastic

local buckling half-wavelength is similar to the one adopted in the calculation of the elastic

local buckling stress, both expressions are tend to interpolate between a lower and upper

limits, the general form of Lb,cs can be expressed as:

Lb,cs = L
SS
b,p − ζ

(
LSSb,p −L

F
b,p

)
where 0 ≤ ζ ≤ 1 (2.26)

where the interaction coefficient is again expressed by the symbol ζ, LSSb,p and LFb,p are the half-

wavelength envelopes of the isolated critical plates with simply-supported and fixed boundary

conditions, the following Eq. (2.27) can be used to determine the buckling half-wavelengths

of the isolated plates with fixed boundary or simply-supported conditions along their neigh-

bouring edges.

Lb,p = kLbbp (2.27)

11
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where kLb is the coefficient depends on the boundary conditions and the applied stress distri-

bution of the isolated plate, and the expressions of kLb for internal and outstand plates with

simply-supported and fixed edge conditions are tabulated in the paper published by Fieber

et al. (2019b). However, comparing to the elastic buckling stress calculations, an additional

transition function η need to be adopted on the basis of calculated half-wave length in order

to overcome the discontinuity of the local buckling half-wavelength at φ = 1, the general

expressions are given as below.

LSSb,p = L
SS
b,wη +L

SS
b,f(1− η) (2.28)

LFb,p = L
F
b,wη +L

F
b,f(1− η) (2.29)

Furthermore, the interaction coefficient ζ used in Eq. (5.1) is the same one illustrated in

Section 2.2.1 for calculation of elastic local buckling stress of the full cross-section, and can

be taken directly from Eq. (2.17 & 2.18).

2.2.4 The Quad-Linear Material Model

As the increasing use of advanced computational techniques in structural analysis, and the

ability of computational software to capture the stress and strain changes more accurately,

in order to maximise the benefits of advanced analysis, a more accurate material model is

required to represent the stress-strain response of hot-rolled structural steels during analysis.

Therefore, in this study, a quad-linear material model for hot-rolled structural steel devel-

oped by Yun & Gardner (2017) will be employed to define the strain-hardening behaviour

and yield plateau length. Unlike the other stress-strain models, the quad-linear material

model developed by Yun & Gardner (2017) has been successfully adopted into the proposed

advanced analysis for hot-rolled carbon steel cross-sections subjected to bending, compres-

sion and combined loading (Yun et al. 2018a,b, Fieber et al. 2019a, Gardner, Yun, Fieber &

Macorini 2019), its simplicity and precise stress-strain relationship makes it ideal for those

FE models that consider material nonlinearities. Equation 2.30 can be used to define the

stress-strain expressions of the quad-linear material model.

12
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ε =



Eε for ε ≤ εy
fy for εy < ε ≤ εsh
fy +Esh (ε − εsh) for εsh < ε ≤ C1εu

fC1εu +
fu−fC1εu
εu−C1εu

(ε −C1εu) for C1εu < ε ≤ εu

(2.30)

From Eq. (2.30), it is evident that the entire stress-strain curve can be defined by just three

regularly used parameters: the yield stress fy , the Young’s modulus E and the ultimate stress

fu. Based on the three commonly used parameters, the followings can be easily derived using

Eq. (2.31−2.33); εsh is the strain when the behaviour of strain hardening first occurs, εu is

the ultimate strain, Esh is the strain hardening modulus, f C1εu is the corresponding stress

of strain C1εu which is located at the intersection point of the third stage of the quad-linear

model as shown below in Fig. 4.

εsh = 0.1
fy
fu
− 0.055 but 0.015 ≤ εsh ≤ 0.03 (2.31)

εu = 0.6
(
1−

fy
fu

)
but εu ≥ 0.06 (2.32)

Esh =
fu − fy

C2εu − εsh
(2.33)

Additionally, C1 and C2 are experimentally calibrated constant which is related to the ulti-

mate strain εu and εsh, the expressions for C1 and C2 are given in Eq. (2.34 & 2.35)

C1 =
εsh +0.25(εu − εsh)

εu
(2.34)

C2 =
εsh +0.4(εu − εsh)

εu
(2.35)

Based on the parameters required for the quad-linear model, a representative quad-linear

material model can be plotted to demonstrate the behaviour of strain hardening and yield

plateau, as demonstrated in Fig. 4.

13



2.3 Alternative Analysis Method 2 LITERATURE REVIEW OF ANALYSIS METHODS

Figure 4: The quad-linear material model developed by Yun & Gardner (2017)

2.3 Other Available Analysis methods in prEN 1993-1-1

Any method that is able to capturing the stability and strength of a structural system and

each of its individual members, without the need for additional member capacity checks,

can be described as advanced analysis (Chen 2008). Among the literature, there are some

other analysis methods could be also classified as ’advanced’ which have been used exten-

sively; ranging from the simplest Elastic-Plastic hinge method (Liew 1992) to the most re-

fined Plastic-zone method (Ziemian et al. 1992). In order to compare the proposed advanced

analysis methods, some common analysis methods accepted in the prEN 1993-1-1 will be

illustrated in the following sections simultaneously.

2.3.1 Second order elastic analysis with C-S Check (M4)

Second order elastic analysis is also known as geometrically nonlinear analysis with imper-

fections (GNIA), which can take into account the second order effects resulted due to sway

imperfections and bow imperfections. This type of analysis was widely used in the early

twenty-first century (Chan & Chen 2005, Chan & Cho 2008, Cho & Chan 2008) as it could

significantly improve the efficiency of design compared to traditional analysis methods. How-

ever, the lack of material non-linearity within the computational model still cannot taking the

14
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advantages from the process of strain hardening.

During the analysis, Chan & Chen (2005) suggested that every element along the mem-

ber length is required to satisfy the section capacity check shown in Eq. (2.36).

P
fyA

+

(
My + P∆y + P δy

)
MY

+
(Mz + P∆z + P δz)

MZ
= ϕ ≤ 1 (2.36)

where fy is the yield strength, P is the applied load, A is the area of the cross-section, My

and Mz are the design moments about the principle axis y or z respectively, P (δz +∆z) and

P (δy +∆y) are the second order effects about the y and z axis caused by the change of mem-

ber geometry (imperfections). Additionally, MY andMZ are the elastic/plastic cross-sectional

bending moment resistance which is related to the cross-sectional properties. Normally, as

the FE package can automatically account the second order effects, and the output can be

directly taken as the design axial force or bending moment, so a simplified version of Eq.

(2.36) is given in prEN 1993-1-1 shown as below:

NEd

NRd
+
My,Ed

My,Rd
+
Mz,Ed

Mz,Rd
≤ 1,0 (2.37)

where in the above Eq. (2.37), NRd represents the cross-section compressive resistance. For

a linear plastic cross-section check with Class 1 or 2 cross-sections, then My,Rd and Mz,Rd

are the plastic moment capacity. Similarly, My,Rd and Mz,Rd should be taken as the elastic

moment capacity if linear elastic cross-section check is required.

Furthermore, as this study is restricted at investigating single plane truss system, out of

plane failure mechanisms are out of the concern, so the bow imperfection used in second

order elastic analysis is taken as the tabulated equivalent bow imperfection in prEN 1993-1-1

to account for the residual stresses and initial geometric nolinearity, the general expressions

are given as below:

e0 =
α
ε
βL (2.38)

where L is the length of the member, α is the imperfection factor related to the relevant

buckling curve according to Table 8.2 in prEN 1993-1-1, ε is the material parameter equals

to
√
235/fy and β is the reference relative bow imperfection can be taken from Table 1.
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Table 1: Reference relative bow imperfection β (Eurocode 3 - Design of steel structures 2021)

Buckling about axis Elastic cross-section
verification

Plastic cross-section
verification

y-y 1/110 1/75

z-z 1/200 1/68

2.3.2 Second order inelastic analysis with C-S Check (M4)

Second order inelastic analysis, also referred to as Geometrically and Materially nonlinear

analysis with imperfections, will result in more precise predictions of the complete load-

deformation response of a structural system. As beam finite elements models is adopted

again for this type of analysis, so additional C-S check is still required in this case. However,

unlike the C-S check used in GNIA analysis, additional capacity could be achieved by carry-

ing out nonlinear cross-section check for Class 1 and Class 2 cross sections, and the bending

moment resistance MRd can be calculated using the formula given as below:

MN,y,Rd =Mpl,y,Rd
1−n

1− 0,5a
but MN,y,Rd ≤Mpl,y,Rd (2.39)

MN,z,Rd =Mpl,z,Rd for n ≤ a (2.40)

MN,z,Rd =Mpl,z,Rd

[
1−

(n− a
1− a

)2]
for n > a (2.41)

where

n =NEd/Npl,Rd (2.42)

a = (A− 2btf) /A but a ≤ 0,5 (2.43)

where A is the surface area of the cross-section, tf is the flange thickness and b is the width.

In order to visualize the capacity increment by using Nonlinear C-S check, the moment

capacity and the normal force capacity (M −N) has been plotted in a same graph with linear

M −N interaction curve for a cross-section with a = 0.5 shown in Fig 5.
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Figure 5: Moment capacity-Normal force capacity interaction curve

Additionally, the equivalent bow imperfection listed in Table 1 were developed on the

basis of second order elastic analysis, inappropriate use of equivalent bow imperfections into

second order inelastic analysis may lead to an over-predicted or under-predicted results. The

GMNIA with nonlinear C-S check would therefore employ a recently defined equivalent bow

imperfections especially designed for second-order inelastic analysis (Walport et al. 2020),

the general expressions of the equivalent bow imperfections developed by Walport et al.

(2020) are given as below:
e0
L

= αβ but
e0
L
≥ 1
1000

(2.44)

Where β is generally recommended as 1/150 for carbon steel, and the imperfections can be

directly modelled as a half-sine wave or scaled to suitable elastic buckling modes.

2.4 Comparison of Design Methods

For those advanced analysis methods mentioned in this chapter, an comparison has been car-

ried out for the differences between the key parameters of those advanced analysis methods,

also include the benchmark shell finite element model mentioned before, an overview of the

comparison is shown in the following Table2.
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3 FINITE ELEMENT MODELLING

3 Finite Element Modelling

As mentioned in last chapter, the advanced analysis methods require the assistant of com-

putational power, so Abaqus as a general FE package is used in this work to evaluate the

precision of the studied advanced analysis with CSM strain limit. Firstly, the approaches

adopted in modelling the benchmark shell FE models will be illustrated in Section 3.1, fol-

lowed by the beam FE models which is specific designed for the proposed CSM strain limit

method, and the simplified versions of the beam FE model will be implemented to the other

advanced analysis methods with C-S check.

3.1 Benchmark Shell Finite Element Modelling

The concept of directly modelling structural systems with shell elements was inspired by

Gardner, Yun, Fieber & Macorini (2019), Fieber et al. (2019a) and Walport et al. (2022),

where the accuracy of using shell FE models to capture the full load-deformation behaviour

has been successfully validated against experimental results for the cases of individual struc-

tural member and portal frame analysis. Therefore, shell FE models will be adopted again in

this study as the benchmark results for truss analysis.

For the shell FE model, the reduced integration of the general four-noded shell elements

S4R expressed in Abaqus is adopted in this study, and each web and flange is assigned 12

such shell elements, the web and flange are then connected together using the Abaqus defined

connector (*MPC BEAM) to form the desired I-section, thus, the member has been meshed

along the axis by ensuring the aspect ratio of element was close to 1. In addition, the plate

thickness tw and tf were assigned respectively for the web and flange plates for I-sections.

Furthermore, since the benchmark shell FE model is supposed to simulate the real struc-

tural behaviour as close as possible, it is assumed that the member initial out-of-straightness

is l/1000 (Walport et al. 2022) rather than the equivalent bow imperfections mentioned be-

fore, and the local plate imperfection is modelled in a sinusoidal shape for both web δweb and

flange δf lange shown in Fig 6. The amplitude of local plate imperfections are assumed to be

equal to c/200 for both web and flange according to the plate imperfection stated in Annex C

of EN 1993-1-5, where c is the width or height of the flange or web plate, and the number of

sinusoidal waves along each member was calculated as the nearest integer of local buckling

half-wavelength Lb,cs that could fit inside the member length. (Fieber et al. 2019a).
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Figure 6: Local plate imperfections implemented into I-section (not to scale) (Fieber 2019)

The quad-linear material model discussed previously is incorporated into the shell FE models

by means of a multi-linear approximation characterised by 135 intervals, and the engineering

stress strain curves were transformed to truss stress and strains using Eq. (3.1) and Eq. (3.2)

respectively as required by Abaqus.

εtrue = ln
(
1+ εeng

)
(3.1)

σtrue = σeng

(
1+ εeng

)
(3.2)

Additionally, the nonlinear material response is also required to be converted to true plastic

strains εpltrue using the expression given by Eq. (3.3)

ε
pl
true = εtrue −

σtrue

E
(3.3)

As the initial geometric imperfections is taken as a relative conservative value which can not

take into account the effects due to other alternative sources, residual stress is still required

to be directly modelled in the shell FE models. ECCS residual stress pattern was assumed,

and were explicitly modelled as an initial stress condition in Abaqus. During modelling, an

additional analysis step was created prior to the loading step to allow the residual stresses to

self-equilibrate, the adopted ECCS residual stress model can be found below in Fig 7, and the

amplitude of the residual stress σrs is related to the aspect ratio h/b of the cross-section.
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Figure 7: Adopted residual stress pattern for Benchmark shell FE models(ECCS 1984)

Additionally, the formed I-sections were aligned at assigned geometry, and the end nodes

at the centroid of each member were defined as ∗Slave and ∗Master nodes in Abaqus for

connection purpose. Normally, the end nodes in chord member will be defined as ∗Master

node in the order of left to right, the rest of the members will then be connected to that
∗Master node simultaneously, and all nodes of the member at end cross-section were coupled

to the ∗Master node, so different support conditions can be achieved by manipulate about

the number of degrees of freedom at the assigned ∗Master node.

Currently, the beam FE model connects the diagonal member to the chord member using

*MPC BEAM in Abaqus which avoided the phenomenon of overlapping between diagonal

members and chords, but also makes the connection region became unrealistically full rigid

as the Abaqus defined *MPC BEAM is a rigid connector. To represents this rigid connection

region into the benchmark shell FE model, the top flange and the bottom flange are connected

using *MPC TIE in the connection region, and the size of connection region is defined from

the bottom flange of the left diagonal to the top flange of the right diagonal as shown in the

following Fig 8. An additional vertical stiffener is modelled at the position of applied point

load, the thickness of the vertical stiffener is identical to the web thickness, and attached to

the I-section web using *MPC TIE connector. Finally, the GMNIA analysis (shell FE model) of

the truss system can then be solved by using the modified Riks arc length algorithm.
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Figure 8: The full rigid connection region in shell FE model
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3.2 Beam Finite Element Modelling

As mentioned before, beam FE models are adopted for the proposed advanced analysis with

CSM strain limit. Unlike shell FE models, beam FE moldels can significantly improve the

design efficiency by saving plenty time consumed in modelling and computation. Again, FE

package Abaqus is adopted to perform the GMNIA analysis using linear Timoshenko B31OS

beam element, which is stored in element library of Abaqus for modelling open sections, and

33 section points were assigned along the web and the flange at each cross-section to cap-

ture the spread of plasticity accurately. Additional, the mesh size along the member length

should not exceed the maximum value which is equal to the corresponding local buckling

half-wavelength Lb.cs for the purpose of accurately capturing the full load-deformation re-

sponse and the spread of plasticity.

Furthermore, the same quad-linear material model is applied again into the beam FE

model to accounts for the effects of material nonlinearity, and then transformed to true stress

σtrue and strain εtrue for Abaqus input. However, the default effective Poisson’s ratio for beam

element was zero in Abaqus, so a value of 0.5 for the Poisson’s ratio need to be explicitly

specified in Abaqus (Walport et al. 2022).

As the CSM strain limit only accounts the effect of initial geometric imperfections and

residual stress at local cross-section level, the initial member imperfection and residual stress

are still required to be explicitly defined in the beam FE model. Therefore, the equivalent

member bow imperfection for GMNIA listed in Eq. (2.44) were implemented into the beam

FE model to reflect the residual stress and member imperfections (Walport et al. 2020).

The comparison between the beam and shell FE models is shown in Fig 9 for a simplified

geometry, it is clear to see that the explicitly defined shell elements are now replaced by the

predefined beam element in Abaqus. In addition, while this study has already recognized

that the finite size of the connection region in the benchmark shell FE mode could cause

significant effects on the predictive capacity, especially for structural steel truss systems, but

the influence of the connection region in the truss system is not the purpose of this study, fur-

ther improvement may carried out by replace the *MPC beam connector by sliced compound

cross-section with varying second moment of area I at local cross-section level to represent

the realistic truss connections. Thus, the results from the GMNIA of beam FE model can then

be assessed by the proposed CSM strain limits.
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4 Results and Discussion

In this section, the accuracy of studied GMNIA-based advanced analysis with CSM strain lim-

its for I-section trusses is evaluated. For the Benchmark shell model, the ultimate resistance

is simply taken as the maximum load when the load deformation response decreases, and

the ultimate resistance generated from the beam FE model with strain limit check is taken

as the lower of (1) the peak load at which the maximum load is reached at structure failure

or (2) the load when the averaged longitudinal compressive strain εEd over the elastic local

buckling half-wavelength Lb,cs has reached the determined CSM strain limit εcsm or ρcsmεcsm.

Meanwhile, the ultimate resistance generated by the simplified beam FE models with cross-

section capacity check are taken as the lower of the peak load or the load occurred when

the section capacity check (Eq. (2.37)) cannot be satisfied anymore. However, due the vary-

ing load increments in nonlinear analysis, the exact load factor at which the strain limit or

maximum C-S capacity is reached will normally not match the solution point obtained from

Abaqus, interpolation between the load levels at either side of the solution point is thus re-

quired to increasing the result accuracy, the analysis procedures of each method are shown

in the following Fig 10. Furthermore, the capacity predictions obtained from each analysis

method will be compared against the benchmark result respectively.

Figure 10: Analysis procedures for different type of analysis mentioned in Section 2
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4.1 Case Study

To validate the accuracy of each generated FE model, the comparison is firstly carried out for

a truss with trial geometry and random member sizes, the geometry and section size selection

is based on avoiding the occurrence of overlapping, the section sizes and truss geometry are

given as below.

Table 3: Section sizes for the truss analyzed in Case 1

Chord Diagonal Member

356×406× 340 305×305× 118

Figure 11: Truss geometry, loading and support conditions for Case 1

Figure 12 depicts the load-deformation curves of the shell FE model and the beam FE model,

the deformation u is extracted at the point where the second point load is applied. It can be

seen that the initial stiffness (α/u) are identical between the benchmark shell FE model and

the beam FE model during the elastic loading period, this phenomenon could represents that

the applied equivalent bow imperfection in the beam FE model can simulate similar second

order effect as the residual stress and the initial member out-of-straightness applied in the

shell FE model. In contrast, the identical stiffness during elastic loading period also means

that the shell FE model successfully approximated the fully rigid connection area in the beam

FE model. Additionally, both models successfully predicted that the failure point would occur

at the middle part on the right sided diagonal, the comparison of the failure point between

both models is shown in Fig 13.
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Table 4: Comparisons between the ultimate resistance αShell of the benchmark shell model, the
studied advanced analysis method αCSM and other considered advanced analysis (Case 1)

Type of analysis Ultimate resistance
(Load Factor)

Normalised ratio
(αShell/αAnalysis)

Benchmark shell FE model (GMNIA) 2.070 1

CSM strain limits (GMNIA) 2.036 0.984

Nonlinear plastic C-S check (GMNIA) 2.017 0.974

Linear elastic C-S check (GNIA) 1.981 0.957

Linear plastic C-S check (GNIA) 1.931 0.932

Traditional design approach 1.852 0.895

Figure 12: Load-deflection paths and predicted ultimate resistances for Case 1
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Figure 13: Comparison of failure point between shell FE mode and beam FE model for Case 1

From Fig 12 and Table 4, it is clear to see that the ultimate capacity predicted by traditional

design approach is relatively conservative comparing to other advanced analysis methods,

and there is an approximately 10 percent increment in the ultimate capacity prediction for the

benchmark shell FE model compared to the traditional design approach. Furthermore, All the

advanced analysis methods predicted a relatively lower ultimate capacity than the benchmark

result, which means the safety of the design is ensured while saving the material cost, the

studied advanced analysis with CSM strain limit predicted the closest ultimate capacity to

the benchmark result among all the advanced analysis using beam FE models. In reality, the

I-section truss are assembled together with individual members by means of gusset plates,

and the gusset plate is normally covered on to individual members for a certain distance,

so the traditional design approach could use lower effective length to increase the flexural

buckling resistance. For instance, the ultimate capacity predicted by traditional method can

be increased to α = 1.95 by using 0.9 Lcr . However, this method may only applicable to

limited trusses, as this tested truss only represents a single member failure rather than the

truss acting as a completed structure, and this phenomenon will be further discussed in the

following cases.

In addition, it is noted that the ultimate capacity predicted by the studied CSM strain

limit method is governed by the peak load during the loading history rather than calculated

strain limit. In order to investigate under what circumstances the ultimate capacity is most

likely to be governed by the CSM strain limits, the case study has been carried out for multiple
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truss systems with various geometry and various section size, and the results are rearranged

in a relationship between local cross-section slenderness λ̄p and member slenderness λ̄ shown

in Fig 14.

Figure 14: Investigation about the CSM strain limit governed cases

In Fig 14, the solid circle is representing those truss systems which the ultimate capacity is

governed by CSM strain limit, and the empty circle is representing those cases governed by

the peak load during the loading history. Although the simulated results are not yet sufficient

to draw a conclusion about this phenomenon, but it is clear to see that the CSM strain limit is

more likely to govern these members which is ’slender’ in cross-section (high λ̄p) but relatively

’stocky’ in member (low λ̄), at least for these type of simple Warren trusses.

For a more visual representation of CSM strain limit governed cases, a modified truss

system based on the presented case 1 is shown below in Fig 15. Note, the section sizes are

the same as shown in Table 3, but the thickness of the flange and web has been reduced for

1mm in diagonal members to achieve ’slender’ cross-section, and the size of the truss has

been equally scaled down to half of the original size to achieve ’stocky’ member.
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Figure 15: Truss geometry, loading and support conditions for Case 2

The predicted ultimate capacity of the modified truss (Case 2) is reported in following Ta-

ble 5, and the load-displacement curve extracted from the beam FE model and the shell FE

model are given in Fig 17. For this case, both shell FE model and beam FE model presented a

continuous capacity strength increase after the first member buckled, this may well explained

by Fig 16, the bottom chord started to carrying a greater amount of force and moment since

the right sided diagonal member has buckled, but the shell FE model will essentially fail at

a lower load factor. Additionally, the ultimate capacity in the beam FE model is detected at

the first instance when the averaged longitudinal compressive strain εEd has reached the de-

termined CSM strain limit εcsm at local cross-section level. The ultimate capacity determined

from studied CSM strain limit method remains the closest to the benchmark result, consis-

tently benefits a 10 percent capacity increment comparing to traditional design approach,

while those ultimate capacity generated using second order elastic analysis methods are very

close to the traditional design approach, with the linear elastic C-S check (GNIA) in particular

is relatively conservative. Furthermore, the application of a reduced 0.9 Lcr effective length

would make other methods more conservative in this case.

Figure 16: deformed shape for Case 2 truss from shell FE model
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Table 5: Comparisons between the ultimate resistance αShell of the benchmark shell model, the
studied advanced analysis method αCSM and other considered advanced analysis (Case 2)

Type of analysis Ultimate resistance
(Load Factor)

Normalised ratio
(αShell/αAnalysis)

Benchmark shell FE model (GMNIA) 1.924 1

CSM strain limits (GMNIA) 1.904 0.990

Nonlinear plastic C-S check (GMNIA) 1.775 0.922

Linear elastic C-S check (GNIA) 1.713 0.890

Linear plastic C-S check (GNIA) 1.739 0.904

Traditional design approach 1.720 0.894

Figure 17: Load-deflection paths and predicted ultimate resistances for Case 2
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In these previous cases, the same section size has been assigned to all the diagonal members

for simplicity purpose. In order to apply the studied advanced analysis with CSM strain limit

into truss design, the sizes of each individual member has to be assigned separately which

means each individual member will be allocated a different section accordingly. To validate

the modified FE model with multiple section sizes in the truss, the same geometry used in

Case 1 is adopted, but the most heavily loaded diagonal members have been randomly as-

signed a bigger section, while smaller section is selected for those internal diagonal members,

the selected section sizes can be found in the following Table 6.

Table 6: Section sizes for the truss analyzed in Case 3

Chord Member Internal Diagonal Member Side Diagonal Member

356×406× 340 203×203× 118 356×406× 340

Comparing to the deformed shape generated by the reference shell FE model and beam FE

model in Fig 18, both models are applicable for the truss consists multiple section sizes, and

both models captured the failure member correctly, it is clear to see that buckling occurred in

the internal member would influence the overall structural response, the truss is now behav-

ing more like a group. From the ultimate capacity comparisons shown in Table 9 and Fig 19,

it is not surprising to see that the CSM strain limit method still ranked as the most sustainable

design method, and the ultimate resistance increment is about 15 percent in this case com-

pared to the traditional design method. Comparing to these conservative methods based on

GNIA, the nonlinear plastic C-S check (GMNIA) take the benefits from material non-linearity

(strain hardening) by using the quad-linear material model.

Figure 18: Comparison of failure point between shell and beam FE model for Case 3
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Table 7: Comparisons between the ultimate resistance αShell of the benchmark shell model, the
studied advanced analysis method αCSM and other considered advanced analysis (Case 3)

Type of analysis Ultimate resistance
(Load Factor)

Normalised ratio
(αShell/αAnalysis)

Benchmark shell FE model (GMNIA) 3.591 1

CSM strain limits (GMNIA) 3.464 0.965

Nonlinear plastic C-S check (GMNIA) 3.322 0.925

Linear elastic C-S check (GNIA) 2.931 0.816

Linear plastic C-S check (GNIA) 2.840 0.791

Traditional design approach 2.920 0.813

Figure 19: Load-deflection paths and predicted ultimate resistances for Case 3
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4.2 Design of Warren Truss

As mentioned before, the section sizes in Case 1, Case 2 and Case 3 are randomly assigned. In

order to apply the studied advanced analysis with CSM strain limit into practical truss design,

each individual member has been sized separately for the given truss geometry and loading

conditions shown in Fig 20, the internal force is firstly determined from first order global

analysis (force equilibrium), and the sections are then sized according to the conventional

design approach stated in prEN 1993-1-1, are the selected sections are shown in Table 9.

Figure 20: Truss geometry, loading and support conditions (Case 4)

Table 8: Section sizes for the truss analyzed in Case 4

Chord Member Internal Diagonal Member Side Diagonal Member

305×305× 198 203×203× 52 356×305× 137

For the designed warren truss consists 3 different sized sections, the second order elastic

analysis methods are relatively underestimated the ultimate resistance comparing to the tra-

ditional design approach. As the cross-section check is mainly governed by the interaction

between compressive force and bending moment, the different sized cross-sections will result

different rotational capacity in each individual member, so the generated greater amount of

bending moment will lead to those methods using C-S check yields at a lower limit. Addition-

ally, as preferred advanced analysis method, the CSM strain limit method consistently yielded

at a upper limit comparing to all the other advanced analysis methods (only 1.6% lower than

the benchmark result), while the predicted ultimate capacity is still on the safe side for all

investigated cases.
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Table 9: Comparisons between the ultimate resistance αShell of the benchmark shell model, the
studied advanced analysis method αCSM and other considered advanced analysis (Case 4)

Type of analysis Ultimate resistance
(Load Factor)

Normalised ratio
(αShell/αAnalysis)

Benchmark shell FE model (GMNIA) 1.203 1

CSM strain limits (GMNIA) 1.183 0.984

Nonlinear plastic C-S check (GMNIA) 1.093 0.908

Linear elastic C-S check (GNIA) 1.001 0.832

Linear plastic C-S check (GNIA) 0.983 0.818

Traditional design approach 1.076 0.894

Figure 21: Load-deflection paths and predicted ultimate resistances for Case 4
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5 Worked Example

For illustration purpose, a worked example using mentioned analysis methods (Section 2) is

presented in this section, the worked example considers a simple hot-rolled steel truss system,

the truss geometry, support conditions and design loading can be found in following Fig 22.

The steel truss is full restricted at out-of-plane deformation, so the worked example is only

considering in-plane failure types, and the following calculations are all based on centreline

dimensions, the section size of each member can be found in the following Table 10.

Table 10: Section sizes for the truss shown in worked example

Chord Diagonal Member

356×406× 340 305×305× 97

Figure 22: Truss geometry, loading and support conditions for worked example

(1) Traditional Design Check

The first step in traditional design check is to determine the internal forces by carrying out a

first order global analysis (force equilibrium), the determined internal forces for the assigned

truss geometry is shown in Fig 23.

Figure 23: Internal forces determine from first order global analysis
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5 WORKED EXAMPLE

In above Fig 23, the negative sign is indicating compressive force, and positive sign is repre-

senting tension force.

Following the method of cross-section classification provided in prEN 1993-1-1, both

sections can be classified as Class 1 cross-section, and the section properties satisfied the

requirement of using buckling curve b for y-y axis, so the imperfection factor α is taken as

0.34. Therefore, the buckling reduction factor χ for the most critical compression members

can thus be calculated by using Eq. (2.3 - 2.6), χ is equal to 0.890 for the 5m compressive

diagonal member and 0.826 for the compressive chord member with 8m long, the member

flexural buckling resistance are given by:

Nb,Rd =
χAfy
γM1

= 3880kN for the 5m compressive diagonal member

Nb,Rd =
χAfy
γM1

= 12100kN for the 8m compressive chord member

In addition, the tension resistance of the assigned two cross-sections are given by:

Npl ,R d =
Afy
γM0

= 4366.5kN for 305×305× 97

Npl ,R d =
Afy
γM0

= 15371.5kN for 356×406× 340

From the above resistance calculations and Fig 23, it is clear to see that the most critical

members are the side diagonals (D1 and D6) which are subjected in compression, the load

factor αLA can thus be be calculated as below:

αLA =
Nb,Rd
NEd

=
3880kN
2500kN

= 1.552

The load factor αLA indicates the number of times the structure can withstand the current

applied load (1000kN) using the conventional design approach stated in prEN 1993-1-1, this

load factor will be further compared with other analysis methods.
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5 WORKED EXAMPLE

(2) GMNIA + CSM strain limit

As previously explained in Section 2, the maximum averaged compressive strains must be less

than the respective CSM strain limit in all cross-sections of the structure, once the average

compressive strain of a single cross-section reaches the CSM strain limit, the structure will

be defined as failed. For simplicity purpose, only the calculation procedures for the critical

cross-section is presented.

The first step is to calculate the full cross-section local buckling stress σcr,cs using the first

order elastic stress distribution taken from Abaqus shown in Fig 24.

Figure 24: The elastic stress distribution at the critical cross-section

As the compression flange is uniformly compressed at the critical section (ψf = 1.0), so the

buckling coefficient for the isolated outstand flanges with simply-supported and fixed bound-

ary conditions can be simply taken as:

kSSf = 0.43 & kFf = 1.25

For the internal web subjected to combined bending and compression with ψw = 0.8775,

which is taken from the 5th step during elastic loading at element 2195 (critical section), the

buckling coefficient are given as below:

kFw =
14.29

1.05+ψ
=

14.29
1.05+0.8775

= 7.414

kSSw =
8.2

1.05+ψ
=

8.2
1.05+0.8775

= 4.254
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The corresponding elastic critical buckling stresses can thus be calculated using Eq. (2.16)

respectively:

σSScr.f = k
SS
f

π2E

12(1− v2)

(
tf
cf

)2
= 830.64MPa σFcr.f = k

F
f

π2E

12(1− v2)

(
tf
cf

)2
= 2414.65MPa

σSScr·w = kSSw
π2E

12(1− v2)

(
tw
cw

)2
= 924.94MPa σFcr.f = k

F
w

π2E

12(1− v2)

(
tw
cw

)2
= 1611.79MPa

As the maximum compressive stresses in the flange and web are identical, so the correction

factors βf and βw are taken as 1, and the upper and lower bound to the full cross-section

local buckling stress can then be derived from Eq. (2.15)

σF
cr,p =min

(
βfσ

F
cr,f,βwσ

F
cr,w

)
= 1611.79MPa

σSS
cr,p =min

(
βfσ

F
cr,f,βwσ

F
cr,w

)
= 830.64MPa

In addition, the interaction coefficient ζ is then calculated using Eq. (2.17 & 2.20):

φ =
σSS
cr,f

σSS
cr,w

= 0.898

ζ = 0.15
tf
tW
φ = 0.2095 ≥ tw

tf
(0.4− 0.25φ) = 0.1062

Thus, the elastic local buckling stress of the full cross-section at the critical element can be

calculated from Eq. (2.12).

σcr,cs = σ
SS
cr,p + ζ

(
σF
cr,p − σSS

cr,p

)
= 830.64+0.2095(1611.79− 830.64) = 994.368Mpa

For the critical cross-section, the local cross-section slenderness λ̄p can then be calculated

using Eq. (2.11).

λ̄p =

√
fy
σcr,cs

=

√
355

994.368
= 0.5975

Hence, the normalised CSM strain limit for the cross-section under consideration can be

calculated using Eq. (2.9) as the local cross-sectional slenderness λ̄p is less than 0.68.

εcsm
εy

=
0.25

λ̄3.6p
=

0.25
0.58753.6

= 1.5963
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Note that this calculated CSM strain limit might not be the final value, additional shear

capacity check is required in case of high shear.

Vpl,Rd =
Av

(
fy/
√
3
)

γM0
= 674.7kN

As a result, no further adjustment is required on the calculated CSM strain limit since the

shear force at the critical section is relatively small comparing to the plastic shear capacity.

Furthermore, the calculated buckling half-wavelengths of isolated plates by using Eq. (2.31)

are LSSb,w = 292.50 mm, LFb,w = 193.05 mm, LSSb,F = 716.50 mm and LFb,f = 251.87 mm. Us-

ing Eq. (2.32 & 2.33), the upper limit and the lower limit to the cross-section local buck-

ling half-wavelength are LSSb,p = 691.34 mm and LFb,p = 248.39 mm, the elastic local buckling

half-wavelength Lb,cs of the full cross-section can thus be calculated using the interaction

coefficient determined for elastic local buckling stress:

Lb,cs = L
SS
b,p − ζ

(
LSSb,p −L

F
b,p

)
= 598.56mm (5.1)

In Fig 26, the CSM strain limit εcsm is then checked with the averaged strain εEd,av over the

elastic local buckling half-wavelength Lb,cs. The failure is found at load step 39 in diagonal

member 6, the ultimate resistance αCSM is found to be 1.673 which is occurred before the

peak load.

Figure 25: Strain distribution along the diagonal member 6
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(3) GMNIA + Nonlinear Plastic C-S check

As mentioned before, the same beam FE model used for CSM strain limit check is also adopted

here for the second order inelastic analysis with C-S check (Section 2.3.2). By utilizing Eq.

(2.39) to Eq. (2.43) for the nonlinear plastic moment capacity calculation and the extracted

design moment and axial force from Abaqus, the ultimate resistance of the assigned truss

system can be easily determined from the critical cross-section, the following Fig 27 is repre-

senting the relationship between the internal force-moment distribution and the correspond-

ing cross-section capacities at the critical element.

Figure 26: GMNIA with nonlinear plastic cross-section check

It is clear to see that the design moment-Compressive force interaction curve crosses the M-N

capacity interaction curve at the 42th step during the loading history in Abaqus, so the ul-

timate capacity αGMNIA using nonlinear plastic C-S check can be directly taken as the load

factor at 42th step.

αGMNIA = LF (42th step) = 1.6642
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(4) GNIA + Linear elastic C-S check

The beam FE model used for GNIA analysis is simplified based on the previous beam FE

model by replacing the quad-linear material model with a perfect elastic material model,

and the equivalent bow imperfection has also been modified for elastic cross-section verifi-

cation according to prEN 1993-1-1 shown in Table 1. Additionally, the cross-section capacity

is checked using Eq. (2.37) at each section, but the bending moment capacity is calculated

based on the corresponding elastic modulus Wel , the linear elastic cross-section check for the

critical section is shown in the following Fig 27.

Figure 27: GNIA with linear elastic cross-section check

In the above Fig 27, the two M-N interaction curves intersect at step 37 which is representing

the Eq. (2.37) can no longer be satisfied, so the ultimate capacity αGNIA,el is taken as the

load factor at step 37 during the loading process.

αGNIA,el = LF (37th step) = 1.6371

42



5 WORKED EXAMPLE

(5) GNIA + Linear plastic C-S check

Again, the beam FE model used by GNIA with the linear plastic C-S check was modified from

the previous beam FE model, and the equivalent bow imperfection is modified in accordance

with plastic cross-section verification as required by prEN 1993-1-1 shown in Table 1.The

cross-section check is also based on Eq. (2.37), but the bending capacity is calculated based

on the corresponding plastic modulus Wpl . Similar M-N interaction curves has been plotted

in Fig 28 to determine the ultimate capacity.

Figure 28: GNIA with linear plastic cross-section check

The GNIA with linear plastic C-S section check yields at the lowest capacity among the listed

4 different advanced analysis methods, structural failure is detected at the 36th step during

the loading process, and the corresponding load factor at this step is simply taken as the

ultimate capacity αGNIA,pl .

αGNIA,pl = LF (36th step) = 1.5844
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6 CONCLUSION

6 Conclusion

In summary, the studied advanced analysis with CSM strain limit has been successfully ex-

tended to steel Warren truss designs, and benefits significantly by capturing the effects of

strain hardening, local moment distribution, the spread of plasticity and element interaction

without further design checks required. Comparing to other alternative advanced analysis

methods and the conventional design approach in EN 1993-1-1, the studied CSM strain limit

method completely eliminates the lengthy calculations required for cross-section classifica-

tion and member capacity checks, and avoided the current limitations within truss design

(effective length estimation), which will typically lead to an inaccurate ultimate capacity

prediction.

The ultimate capacity predicted by the studied advanced analysis with CSM strain limit

method using beam FE model has a consistent 10% to 15% capacity increment comparing

to the traditional design approach, and the ultimate capacity prediction always remaining on

the safe side, only 1% to 4% lower comparing to the reference shell FE model. In addition, the

beam FE models used for CSM strain limits method in geometrically and materially nonlinear

analysis with imperfections has successfully captured the correct failure mechanism during

the analysis, which could also utilized to define the critical sections.
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7 Future Work

During the relative short 2 month time, some current limitations has been identified and

listed below, these limitations will be attempted to be solved in the future works shortly.

(1) Connection regions

As the current shell FE model and beam FE model cannot deal with overlapping when the two

diagonal member intersects, so the truss geometry and section sizes are limited to a certain

range. In the next study, the beam FE model will be attempted to account realistic connection

region by recalculate the corresponding second moment of area of each divided slices in the

connection region, and the shell FE model will try to include connection stiffeners to reflect

realistic truss connections

(2) Parametric study & reliability analysis

In this current study, the limited results only presented some initial findings of the studied

advanced analysis for truss design, and gives the author confidence for future research, but

more results for different scenarios and reliability analysis are required to be carried out in

order to validate that the studied advanced analysis can served well in the future as a practical

design method.

(4) Complicated truss structure

Modern truss structures tend to have more complicated structural functions, the benchmark

shell FE model and beam FE model need to be able to explicitly define the complicate truss

geometry, connections regions and applicable for other closed sections (RHS and CHS).
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